generating function
Recently Published Documents


TOTAL DOCUMENTS

1986
(FIVE YEARS 383)

H-INDEX

38
(FIVE YEARS 5)

2022 ◽  
Vol 40 ◽  
pp. 1-15
Author(s):  
Subuhi Khan ◽  
Tabinda Nahid

The intended objective of this paper is to introduce a new class of the hybrid q-Sheffer polynomials by means of the generating function and series definition. The determinant definition and other striking properties of these polynomials are established. Certain results for the continuous q-Hermite-Appell polynomials are obtained. The graphical depictions are performed for certain members of the hybrid q-Sheffer family. The zeros of these members are also explored using numerical simulations. Finally, the orthogonality condition for the hybrid q-Sheffer polynomials is established.


2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Shreejit Bandyopadhyay ◽  
Ae Yee

Recently, George Beck posed many interesting partition problems considering the number of ones in partitions. In this paper, we first consider the crank generating function weighted by the number of ones and obtain analytic formulas for this weighted crank function under conditions of the crank being less than or equal to some specific integer. We connect these cumulative and point crank functions to the generating functions of partitions with certain sizes of Durfee rectangles. We then consider a generalization of the crank for $k$-colored partitions, which was first introduced by Fu and Tang, and investigate the corresponding generating function for this crank weighted by the number of parts in the first subpartition of a $k$-colored partition. We show that the cumulative generating functions are the same as the generating functions for certain unimodal sequences.


2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Hyunsoo Cho ◽  
Byungchan Kim ◽  
Hayan Nam ◽  
Jaebum Sohn

$t$-core partitions have played important roles in the theory of partitions and related areas. In this survey, we briefly summarize interesting and important results on $t$-cores from classical results like how to obtain a generating function to recent results like simultaneous cores. Since there have been numerous studies on $t$-cores, it is infeasible to survey all the interesting results. Thus, we mainly focus on the roles of $t$-cores in number theoretic aspects of partition theory. This includes the modularity of $t$-core partition generating functions, the existence of $t$-core partitions, asymptotic formulas and arithmetic properties of $t$-core partitions, and combinatorial and number theoretic aspects of simultaneous core partitions. We also explain some applications of $t$-core partitions, which include relations between core partitions and self-conjugate core partitions, a $t$-core crank explaining Ramanujan's partition congruences, and relations with class numbers.


2021 ◽  
pp. 4875-4884
Author(s):  
Khaled Hadi ◽  
Saad Nagy

The question on affine Riesz basis of Walsh affine systems is considered. An affine Riesz basis is constructed, generated by a continuous periodic function that belongs to the space on the real line, which has a derivative almost everywhere; in connection with the construction of this example, we note that the functions of the classical Walsh system suffer a discontinuity and their derivatives almost vanish everywhere. A method of regularization (improvement of differential properties) of the generating function of Walsh affine system is proposed, and a criterion for an affine Riesz basis for a regularized generating function that can be represented as a sum of a series in the Rademacher system is obtained.


Author(s):  
Na Chen ◽  
Shane Chern ◽  
Yan Fan ◽  
Ernest X. W. Xia

Abstract Let $\mathcal {O}(\pi )$ denote the number of odd parts in an integer partition $\pi$ . In 2005, Stanley introduced a new statistic $\operatorname {srank}(\pi )=\mathcal {O}(\pi )-\mathcal {O}(\pi ')$ , where $\pi '$ is the conjugate of $\pi$ . Let $p(r,\,m;n)$ denote the number of partitions of $n$ with srank congruent to $r$ modulo $m$ . Generating function identities, congruences and inequalities for $p(0,\,4;n)$ and $p(2,\,4;n)$ were then established by a number of mathematicians, including Stanley, Andrews, Swisher, Berkovich and Garvan. Motivated by these works, we deduce some generating functions and inequalities for $p(r,\,m;n)$ with $m=16$ and $24$ . These results are refinements of some inequalities due to Swisher.


Author(s):  
Ujjal Debnath

In this paper, we have considered flat Friedmann–Robertson–Walker (FRW) model of the universe and reviewed the modified Chaplygin gas as the fluid source. Associated with the scalar field model, we have determined the Hubble parameter as a generating function in terms of the scalar field. Instead of hyperbolic function, we have taken Jacobi elliptic function and Abel function in the generating function and obtained modified Chaplygin–Jacobi gas (MCJG) and modified Chaplygin–Abel gas (MCAG) equation of states, respectively. Next, we have assumed that the universe is filled in dark matter, radiation, and dark energy. The sources of dark energy candidates are assumed as MCJG and MCAG. We have constrained the model parameters by recent observational data analysis. Using [Formula: see text] minimum test (maximum likelihood estimation), we have determined the best-fit values of the model parameters by OHD[Formula: see text]CMB[Formula: see text]BAO[Formula: see text]SNIa joint data analysis. To examine the viability of the MCJG and MCAG models, we have determined the values of the deviations of information criteria like △AIC, △BIC and △DIC. The evolutions of cosmological and cosmographical parameters (like equation of state, deceleration, jerk, snap, lerk, statefinder, Om diagnostic) have been studied for our best-fit values of model parameters. To check the classical stability of the models, we have examined the values of square speed of sound [Formula: see text] in the interval [Formula: see text] for expansion of the universe.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
R. G. M. Rodrigues ◽  
B. V. Costa ◽  
L. A. S. Mól

2021 ◽  
Vol 13 (2) ◽  
pp. 413-426
Author(s):  
S. Naderi ◽  
R. Kazemi ◽  
M. H. Behzadi

Abstract The bucket recursive tree is a natural multivariate structure. In this paper, we apply a trivariate generating function approach for studying of the depth and distance quantities in this tree model with variable bucket capacities and give a closed formula for the probability distribution, the expectation and the variance. We show as j → ∞, lim-iting distributions are Gaussian. The results are obtained by presenting partial differential equations for moment generating functions and solving them.


Sign in / Sign up

Export Citation Format

Share Document