scholarly journals Cyclic queueing networks with subexponential service times

2004 ◽  
Vol 41 (03) ◽  
pp. 791-801
Author(s):  
H. Ayhan ◽  
Z. Palmowski ◽  
S. Schlegel

For a K-stage cyclic queueing network with N customers and general service times, we provide bounds on the nth departure time from each stage. Furthermore, we analyze the asymptotic tail behavior of cycle times and waiting times given that at least one service-time distribution is subexponential.

2004 ◽  
Vol 41 (3) ◽  
pp. 791-801 ◽  
Author(s):  
H. Ayhan ◽  
Z. Palmowski ◽  
S. Schlegel

For a K-stage cyclic queueing network with N customers and general service times, we provide bounds on the nth departure time from each stage. Furthermore, we analyze the asymptotic tail behavior of cycle times and waiting times given that at least one service-time distribution is subexponential.


1984 ◽  
Vol 16 (01) ◽  
pp. 216-219 ◽  
Author(s):  
P. G. Harrison

Cycle-time distribution is shown to take the form of a linear combination of M Erlang-N density functions in a cyclic queueing network of M servers and N customers. For paths of m servers in tree-like networks, the components in the more complex linear combination are convolutions of Erlang-N with at most m − 1 negative exponentials.


2017 ◽  
Vol 54 (4) ◽  
pp. 995-1007 ◽  
Author(s):  
S. Foss ◽  
A. L. Stolyar

Abstract A parallel server system with n identical servers is considered. The service time distribution has a finite mean 1 / μ, but otherwise is arbitrary. Arriving customers are routed to one of the servers immediately upon arrival. The join-idle-queue routeing algorithm is studied, under which an arriving customer is sent to an idle server, if such is available, and to a randomly uniformly chosen server, otherwise. We consider the asymptotic regime where n → ∞ and the customer input flow rate is λn. Under the condition λ / μ < ½, we prove that, as n → ∞, the sequence of (appropriately scaled) stationary distributions concentrates at the natural equilibrium point, with the fraction of occupied servers being constant at λ / μ. In particular, this implies that the steady-state probability of an arriving customer waiting for service vanishes.


1984 ◽  
Vol 16 (1) ◽  
pp. 216-219 ◽  
Author(s):  
P. G. Harrison

Cycle-time distribution is shown to take the form of a linear combination of M Erlang-N density functions in a cyclic queueing network of M servers and N customers. For paths of m servers in tree-like networks, the components in the more complex linear combination are convolutions of Erlang-N with at most m − 1 negative exponentials.


Chapter 8 gives a brief discussion of computer simulation for discrete events. The chapter lists software programs in the technical literature that outline programs for the simulation of discrete events, both of commercial origin and free programs. In addition to the lists submitted, the authors present specialized packages for analysis and simulation of waiting lines in the R language. Statistical considerations are presented, which must be taken into account when obtaining data from simulations in situations of waiting lines. Chapter 8 presents three packages of the statistical program R: the “queueing” analysis package provides versatile tools for analysis of birth- and death-based Markovian queueing models and single and multiclass product-form queueing networks; “simmer” package is a process-oriented and trajectory-based discrete-event simulation (DES) package for R; and, the purpose of the “queuecomputer” package is to calculate, deterministically, the outputs of a queueing network, given the arrival and service times of all the customers. It also uses simulation for the implementation of a method for the calculation of queues with arbitrary arrival and service times. For each theme, the authors show the use of the packages in R.


1987 ◽  
Vol 19 (03) ◽  
pp. 708-738 ◽  
Author(s):  
X. R. Cao

Perturbation analysis is a new technique which yields the sensitivities of system performance measures with respect to parameters based on one sample path of a system. This paper provides some theoretical analysis for this method. A new notion, the realization probability of a perturbation in a closed queueing network, is studied. The elasticity of the expected throughput in a closed Jackson network with respect to the mean service times can be expressed in terms of the steady-state probabilities and realization probabilities in a very simple way. The elasticity of the throughput with respect to the mean service times when the service distributions are perturbed to non-exponential distributions can also be obtained using these realization probabilities. It is proved that the sample elasticity of the throughput obtained by perturbation analysis converges to the elasticity of the expected throughput in steady-state both in mean and with probability 1 as the number of customers served goes to This justifies the existing algorithms based on perturbation analysis which efficiently provide the estimates of elasticities in practice.


Sign in / Sign up

Export Citation Format

Share Document