Functional and random central limit theorems for the Robbins-Munro process

1976 ◽  
Vol 13 (01) ◽  
pp. 148-154
Author(s):  
D. L. McLeish

A functional central limit theorem extending the central limit theorem of Chung (1954) for the Robbins–Munro procedure is proved. It is shown that the asymptotic normality is preserved under certain random stopping rules.

1976 ◽  
Vol 13 (1) ◽  
pp. 148-154 ◽  
Author(s):  
D. L. McLeish

A functional central limit theorem extending the central limit theorem of Chung (1954) for the Robbins–Munro procedure is proved. It is shown that the asymptotic normality is preserved under certain random stopping rules.


1973 ◽  
Vol 5 (01) ◽  
pp. 119-137 ◽  
Author(s):  
D. J. Scott

The Skorokhod representation for martingales is used to obtain a functional central limit theorem (or invariance principle) for martingales. It is clear from the method of proof that this result may in fact be extended to the case of triangular arrays in which each row is a martingale sequence and the second main result is a functional central limit theorem for such arrays. These results are then used to obtain two functional central limit theorems for processes with stationary ergodic increments following on from the work of Gordin. The first of these theorems extends a result of Billingsley for Φ-mixing sequences.


1973 ◽  
Vol 5 (1) ◽  
pp. 119-137 ◽  
Author(s):  
D. J. Scott

The Skorokhod representation for martingales is used to obtain a functional central limit theorem (or invariance principle) for martingales. It is clear from the method of proof that this result may in fact be extended to the case of triangular arrays in which each row is a martingale sequence and the second main result is a functional central limit theorem for such arrays. These results are then used to obtain two functional central limit theorems for processes with stationary ergodic increments following on from the work of Gordin. The first of these theorems extends a result of Billingsley for Φ-mixing sequences.


1975 ◽  
Vol 13 (1) ◽  
pp. 45-55 ◽  
Author(s):  
R.J. Adler ◽  
D.J. Scott

Central limit theorems are obtained for martingale arrays without the requirement of uniform asymptotic negligibility. The results obtained generalise the sufficiency part of Zolotarev's extension of the classical Lindeberg-Feller central limit theorem [V.M. Zolotarev, Theor. Probability Appl. 12 (1967), 608–618] and also the main martingale central limit theorem (not functional central limit theorem however) of D.L. McLeish [Ann. Probability 2 (1974), 620–628.


1997 ◽  
Vol 13 (3) ◽  
pp. 353-367 ◽  
Author(s):  
Robert M. de Jong

This paper presents central limit theorems for triangular arrays of mixingale and near-epoch-dependent random variables. The central limit theorem for near-epoch-dependent random variables improves results from the literature in various respects. The approach is to define a suitable Bernstein blocking scheme and apply a martingale difference central limit theorem, which in combination with weak dependence conditions renders the result. The most important application of this central limit theorem is the improvement of the conditions that have to be imposed for asymptotic normality of minimization estimators.


1992 ◽  
Vol 24 (2) ◽  
pp. 267-287 ◽  
Author(s):  
Allen L. Roginsky

Three different definitions of the renewal processes are considered. For each of them, a central limit theorem with a remainder term is proved. The random variables that form the renewal processes are independent but not necessarily identically distributed and do not have to be positive. The results obtained in this paper improve and extend the central limit theorems obtained by Ahmad (1981) and Niculescu and Omey (1985).


Sign in / Sign up

Export Citation Format

Share Document