functional central limit
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 53 (4) ◽  
pp. 1190-1221
Author(s):  
Bo Li ◽  
Guodong Pang

AbstractWe study shot noise processes with cluster arrivals, in which entities in each cluster may experience random delays (possibly correlated), and noises within each cluster may be correlated. We prove functional limit theorems for the process in the large-intensity asymptotic regime, where the arrival rate gets large while the shot shape function, cluster sizes, delays, and noises are unscaled. In the functional central limit theorem, the limit process is a continuous Gaussian process (assuming the arrival process satisfies a functional central limit theorem with a Brownian motion limit). We discuss the impact of the dependence among the random delays and among the noises within each cluster using several examples of dependent structures. We also study infinite-server queues with cluster/batch arrivals where customers in each batch may experience random delays before receiving service, with similar dependence structures.


2021 ◽  
pp. 699-723
Author(s):  
James Davidson

After some technical preliminaries, this chapter gives two contrasting proofs of the functional central limit theorem for near‐epoch dependent functions of mixing processes. It goes on to consider variants of the result for nonstationary increments in which the limits are transformed Brownian motions, subject to distortions of the time domain. The multivariate case of the result is also given.


2021 ◽  
pp. 638-667
Author(s):  
James Davidson

This chapter reviews the theory of weak convergence in metric spaces. Topics include Skorokhod’s representation theorem, the metrization of spaces of measures, and the concept of tightness of probability measures. The key relation is shown between weak convergence and uniform tightness. Considering the space C of continuous functions in particular, the functional central limit theorem is proved for martingales, together with extensions to the multivariate case.


Author(s):  
James Davidson

This book aims to introduce modern asymptotic theory to students and practitioners of econometrics. It falls broadly into two parts. The first provides a handbook and reference for the underlying mathematics (Part I, Chapters 1–6), statistical theory (Part II, Chapters 7–11), and stochastic process theory (Part III, Chapters 12–18). The second half provides a treatment of the main convergence theorems used in analysing the large sample behaviour of econometric estimators and tests. These are the law of large numbers (Part IV, Chapters 19–22), the central limit theorem (Part V, Chapters 23–26), and the functional central limit theorem (Part VI, Chapters 27–32). The focus in this treatment is on the nonparametric approach to time series properties, covering topics such as nonstationarity, mixing, martingales, and near‐epoch dependence. While the approach is not elementary, care is taken to keep the treatment self‐contained. Proofs are provided for almost all the results.


2021 ◽  
Vol 8 (8) ◽  
pp. 211065
Author(s):  
Yuting I. Li ◽  
Günther Turk ◽  
Paul B. Rohrbach ◽  
Patrick Pietzonka ◽  
Julian Kappler ◽  
...  

Epidemiological forecasts are beset by uncertainties about the underlying epidemiological processes, and the surveillance process through which data are acquired. We present a Bayesian inference methodology that quantifies these uncertainties, for epidemics that are modelled by (possibly) non-stationary, continuous-time, Markov population processes. The efficiency of the method derives from a functional central limit theorem approximation of the likelihood, valid for large populations. We demonstrate the methodology by analysing the early stages of the COVID-19 pandemic in the UK, based on age-structured data for the number of deaths. This includes maximum a posteriori estimates, Markov chain Monte Carlo sampling of the posterior, computation of the model evidence, and the determination of parameter sensitivities via the Fisher information matrix. Our methodology is implemented in PyRoss, an open-source platform for analysis of epidemiological compartment models.


Author(s):  
Obayda Assaad ◽  
David Nualart ◽  
Ciprian A. Tudor ◽  
Lauri Viitasaari

AbstractIn this article we present a quantitative central limit theorem for the stochastic fractional heat equation driven by a a general Gaussian multiplicative noise, including the cases of space–time white noise and the white-colored noise with spatial covariance given by the Riesz kernel or a bounded integrable function. We show that the spatial average over a ball of radius R converges, as R tends to infinity, after suitable renormalization, towards a Gaussian limit in the total variation distance. We also provide a functional central limit theorem. As such, we extend recently proved similar results for stochastic heat equation to the case of the fractional Laplacian and to the case of general noise.


Risks ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 108
Author(s):  
Anatoliy Swishchuk

We show how to solve Merton optimal investment stochastic control problem for Hawkes-based models in finance and insurance (Propositions 1 and 2), i.e., for a wealth portfolio X(t) consisting of a bond and a stock price described by general compound Hawkes process (GCHP), and for a capital R(t) (risk process) of an insurance company with the amount of claims described by the risk model based on GCHP. The main approach in both cases is to use functional central limit theorem for the GCHP to approximate it with a diffusion process. Then we construct and solve Hamilton–Jacobi–Bellman (HJB) equation for the expected utility function. The novelty of the results consists of the new Hawkes-based models and in the new optimal investment results in finance and insurance for those models.


2021 ◽  
Vol 58 (2) ◽  
pp. 428-448
Author(s):  
Thirupathaiah Vasantam ◽  
Ravi R. Mazumdar

AbstractIn this paper we study a large system of N servers, each with capacity to process at most C simultaneous jobs; an incoming job is routed to a server if it has the lowest occupancy amongst d (out of N) randomly selected servers. A job that is routed to a server with no vacancy is assumed to be blocked and lost. Such randomized policies are referred to JSQ(d) (Join the Shortest Queue out of d) policies. Under the assumption that jobs arrive according to a Poisson process with rate $N\lambda^{(N)}$ where $\lambda^{(N)}=\sigma-\frac{\beta}{\sqrt{N}\,}$ , $\sigma\in\mathbb{R}_+$ and $\beta\in\mathbb{R}$ , we establish functional central limit theorems for the fluctuation process in both the transient and stationary regimes when service time distributions are exponential. In particular, we show that the limit is an Ornstein–Uhlenbeck process whose mean and variance depend on the mean field of the considered model. Using this, we obtain approximations to the blocking probabilities for large N, where we can precisely estimate the accuracy of first-order approximations.


Sign in / Sign up

Export Citation Format

Share Document