Econometric Theory
Latest Publications


TOTAL DOCUMENTS

2442
(FIVE YEARS 161)

H-INDEX

92
(FIVE YEARS 2)

Published By Cambridge University Press

1469-4360, 0266-4666

2021 ◽  
pp. 1-36
Author(s):  
Joris Pinkse ◽  
Karl Schurter

We estimate the density and its derivatives using a local polynomial approximation to the logarithm of an unknown density function f. The estimator is guaranteed to be non-negative and achieves the same optimal rate of convergence in the interior as on the boundary of the support of f. The estimator is therefore well-suited to applications in which non-negative density estimates are required, such as in semiparametric maximum likelihood estimation. In addition, we show that our estimator compares favorably with other kernel-based methods, both in terms of asymptotic performance and computational ease. Simulation results confirm that our method can perform similarly or better in finite samples compared to these alternative methods when they are used with optimal inputs, that is, an Epanechnikov kernel and optimally chosen bandwidth sequence. We provide code in several languages.


2021 ◽  
pp. 1-35
Author(s):  
Matias D. Cattaneo ◽  
Michael Jansson

This paper highlights a tension between semiparametric efficiency and bootstrap consistency in the context of a canonical semiparametric estimation problem, namely the problem of estimating the average density. It is shown that although simple plug-in estimators suffer from bias problems preventing them from achieving semiparametric efficiency under minimal smoothness conditions, the nonparametric bootstrap automatically corrects for this bias and that, as a result, these seemingly inferior estimators achieve bootstrap consistency under minimal smoothness conditions. In contrast, several “debiased” estimators that achieve semiparametric efficiency under minimal smoothness conditions do not achieve bootstrap consistency under those same conditions.


2021 ◽  
pp. 1-19
Author(s):  
Marco Lippi

A popular validation procedure for Dynamic Stochastic General Equilibrium (DSGE) models consists in comparing the structural shocks and impulse-response functions obtained by estimation-calibration of the DSGE with those obtained in an Structural Vector Autoregressions (SVAR) identified by means of some of the DSGE restrictions. I show that this practice can be seriously misleading when the variables used in the SVAR contain measurement errors. If this is the case, for generic values of the parameters of the DSGE, the shocks estimated in the SVAR are not “made of” the corresponding structural shocks plus measurement error. Rather, each of the SVAR shocks is contaminated by noncorresponding structural shocks. We argue that High-Dimensional Dynamic Factor Models are free from this drawback and are the natural model to use in validation procedures for DSGEs.


2021 ◽  
pp. 1-31
Author(s):  
Zheng Fang ◽  
Qi Li ◽  
Karen X. Yan

In this paper, we present a new nonparametric method for estimating a conditional quantile function and develop its weak convergence theory. The proposed estimator is computationally easy to implement and automatically ensures quantile monotonicity by construction. For inference, we propose to use a residual bootstrap method. Our Monte Carlo simulations show that this new estimator compares well with the check-function-based estimator in terms of estimation mean squared error. The bootstrap confidence bands yield adequate coverage probabilities. An empirical example uses a dataset of Canadian high school graduate earnings, illustrating the usefulness of the proposed method in applications.


2021 ◽  
pp. 1-26
Author(s):  
Ulrich Hounyo

This paper introduces a novel wild bootstrap for dependent data (WBDD) as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The consistency of the bootstrap variance estimator for smooth function of the sample mean is shown to be robust against heteroskedasticity and dependence of unknown form. The first-order asymptotic validity of the WBDD in distribution approximation is established when data are assumed to satisfy a near epoch dependent condition and under the framework of the smooth function model. The WBDD offers a viable alternative to the existing non parametric bootstrap methods for dependent data. It preserves the second-order correctness property of blockwise bootstrap (provided we choose the external random variables appropriately), for stationary time series and smooth functions of the mean. This desirable property of any bootstrap method is not known for extant wild-based bootstrap methods for dependent data. Simulation studies illustrate the finite-sample performance of the WBDD.


2021 ◽  
pp. 1-23
Author(s):  
Hiroyuki Kasahara ◽  
Katsumi Shimotsu

We study identification in nonparametric regression models with a misclassified and endogenous binary regressor when an instrument is correlated with misclassification error. We show that the regression function is nonparametrically identified if one binary instrument variable and one binary covariate satisfy the following conditions. The instrumental variable corrects endogeneity; the instrumental variable must be correlated with the unobserved true underlying binary variable, must be uncorrelated with the error term in the outcome equation, but is allowed to be correlated with the misclassification error. The covariate corrects misclassification; this variable can be one of the regressors in the outcome equation, must be correlated with the unobserved true underlying binary variable, and must be uncorrelated with the misclassification error. We also propose a mixture-based framework for modeling unobserved heterogeneous treatment effects with a misclassified and endogenous binary regressor and show that treatment effects can be identified if the true treatment effect is related to an observed regressor and another observable variable.


Sign in / Sign up

Export Citation Format

Share Document