scholarly journals Adic approximation of complexes, and multiplicities

1974 ◽  
Vol 54 ◽  
pp. 61-67 ◽  
Author(s):  
David Eisenbud

In [2, Section 1.6] Peskine and Szpiro prove a theorem on adic approximations of finite free resolutions over local rings which, together with M. Artin’s Approximation Theorem [1], allows them to “descend” modules of finite projective dimension over the completions of certain local rings to modules of finite projective dimension over finite étale extensions of those rings. In this note we will prove a more general result, which deals with the change in homology under an adic approximation of any complex of finitely generated modules over a noetherian ring, and which allows one to descend not only modules of finite projective dimension, but also the Euler characteristic or intersection multiplicity of two such modules.

2008 ◽  
Vol 102 (2) ◽  
pp. 206 ◽  
Author(s):  
Sean Sather-Wagstaff ◽  
Diana White

We extend Auslander and Buchsbaum's Euler characteristic from the category of finitely generated modules of finite projective dimension to the category of modules of finite G-dimension using Avramov and Martsinkovsky's notion of relative Betti numbers. We prove analogues of some properties of the classical invariant and provide examples showing that other properties do not translate to the new context. One unexpected property is in the characterization of the extremal behavior of this invariant: the vanishing of the Euler characteristic of a module $M$ of finite G-dimension implies the finiteness of the projective dimension of $M$. We include two applications of the Euler characteristic as well as several explicit calculations.


2015 ◽  
Vol 219 ◽  
pp. 87-111 ◽  
Author(s):  
S. P. Dutta

AbstractWe address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular, we derive that, in any local ringRof mixed characteristicp> 0, wherepis a nonzero divisor, ifIis an ideal of finite projective dimension overRandp𝜖Iorpis a nonzero divisor onR/I, then every minimal generator ofIis a nonzero divisor. Hence, ifPis a prime ideal of finite projective dimension in a local ringR, then every minimal generator ofPis a nonzero divisor inR.


2015 ◽  
Vol 219 ◽  
pp. 87-111
Author(s):  
S. P. Dutta

AbstractWe address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular, we derive that, in any local ring R of mixed characteristic p > 0, where p is a nonzero divisor, if I is an ideal of finite projective dimension over R and p 𝜖 I or p is a nonzero divisor on R/I, then every minimal generator of I is a nonzero divisor. Hence, if P is a prime ideal of finite projective dimension in a local ring R, then every minimal generator of P is a nonzero divisor in R.


2002 ◽  
Vol 85 (2) ◽  
pp. 393-440 ◽  
Author(s):  
LUCHEZAR L. AVRAMOV ◽  
ALEX MARTSINKOVSKY

We study finitely generated modules $M$ over a ring $R$, noetherian on both sides. If $M$ has finite Gorenstein dimension $\mbox{G-dim}_RM$ in the sense of Auslander and Bridger, then it determines two other cohomology theories besides the one given by the absolute cohomology functors ${\rm Ext}^n_R(M,\ )$. Relative cohomology functors ${\rm Ext}^n_{\mathcal G}(M,\ )$ are defined for all non-negative integers $n$; they treat the modules of Gorenstein dimension $0$ as projectives and vanish for $n > \mbox{G-dim}_RM$. Tate cohomology functors $\widehat{\rm Ext}^n_R(M,\ )$ are defined for all integers $n$; all groups $\widehat{\rm Ext}^n_R(M,N)$ vanish if $M$ or $N$ has finite projective dimension. Comparison morphisms $\varepsilon_{\mathcal G}^n \colon {\rm Ext}^n_{\mathcal G}(M,\ ) \to {\rm Ext}^n_R(M,\ )$ and $\varepsilon_R^n \colon {\rm Ext}^n_R(M,\ ) \to \widehat{\rm Ext}^n_R(M,\ )$ link these functors. We give a self-contained treatment of modules of finite G-dimension, establish basic properties of relative and Tate cohomology, and embed the comparison morphisms into a canonical long exact sequence $0 \to {\rm Ext}^1_{\mathcal G}(M,\ ) \to \cdots \to {\rm Ext}^n_{\mathcal G}(M,\ ) \to {\rm Ext}^n_R(M,\ ) \to \widehat{\rm Ext}^n_R(M,\ ) \to {\rm Ext}^{n+1}_{\mathcal G}(M,\ ) \to \cdots$. We show that these results provide efficient tools for computing old and new numerical invariants of modules over commutative local rings. 2000 Mathematical Subject Classification: 16E05, 13H10, 18G25.


2017 ◽  
Vol 102 (116) ◽  
pp. 115-120
Author(s):  
Alireza Vahidi

Let R be a commutative Noetherian ring with non-zero identity, a and b proper ideals of R,M a finitely generated R-module with finite projective dimension, and X a finitely generated R-module. We study the cohomological dimensions of M and X with respect to a + b and a ? b. We show that the inequality cda+b(M,X) ? cda(M,X) + cdb(X) holds true and we find an equivalent condition for it to be equality.


2012 ◽  
Vol 55 (1) ◽  
pp. 85-96
Author(s):  
SEAN SATHER-WAGSTAFF

AbstractThis paper builds on work of Hochster and Yao that provides nice embeddings for finitely generated modules of finite G-dimension, finite projective dimension or locally finite injective dimension. We extend these results by providing similar embeddings in the relative setting, that is, for certain modules of finite GC-dimension, finite C-projective dimension, locally finite C-injective dimension or locally finite C-injective dimension where C is a semidualizing module. Along the way, we extend some results for modules of finite homological dimension to modules of locally finite homological dimension in the relative setting.


1996 ◽  
Vol 306 (1) ◽  
pp. 445-457 ◽  
Author(s):  
Dieter Happel ◽  
Luise Unger

Sign in / Sign up

Export Citation Format

Share Document