Sur une notion d'autonomie de systèmes dynamiques, appliquée aux ensembles invariants des flots d' Anosov algébriques

1995 ◽  
Vol 15 (1) ◽  
pp. 175-207 ◽  
Author(s):  
A. Zeghib

AbstractWe introduce a notion of autonomous dynamical systems which generalizes algebraic dynamical systems. We show by giving examples and by describing some properties that this generalization is not a trivial one. We apply the methods then developed to algebraic Anosov systems. We prove that a C1-submanifold of finite volume, which is invariant by an algebraic Anosov system is ‘essentially’ algebraic.

Author(s):  
Xiaopeng Chen ◽  
Jinqiao Duan

The decomposition of state spaces into dynamically different components is helpful for understanding dynamics of complex systems. A Conley-type decomposition theorem is proved for non-autonomous dynamical systems defined on a non-compact but separable state space. Specifically, the state space can be decomposed into a chain-recurrent part and a gradient-like part. This result applies to both non-autonomous ordinary differential equations on a Euclidean space (which is only locally compact), and to non-autonomous partial differential equations on an infinite-dimensional function space (which is not even locally compact). This decomposition result is demonstrated by discussing a few concrete examples, such as the Lorenz system and the Navier–Stokes system, under time-dependent forcing.


2019 ◽  
Vol 100 (1) ◽  
pp. 76-85
Author(s):  
RYSZARD J. PAWLAK ◽  
JUSTYNA POPRAWA

We analyse local aspects of chaos for nonautonomous periodic dynamical systems in the context of generating autonomous dynamical systems and the possibility of disturbing them.


2017 ◽  
Vol 39 (3) ◽  
pp. 604-619 ◽  
Author(s):  
SIDDHARTHA BHATTACHARYA ◽  
TULLIO CECCHERINI-SILBERSTEIN ◽  
MICHEL COORNAERT

Let$X$be a compact metrizable group and let$\unicode[STIX]{x1D6E4}$be a countable group acting on$X$by continuous group automorphisms. We give sufficient conditions under which the dynamical system$(X,\unicode[STIX]{x1D6E4})$is surjunctive, i.e. every injective continuous map$\unicode[STIX]{x1D70F}:X\rightarrow X$commuting with the action of$\unicode[STIX]{x1D6E4}$is surjective.


Sign in / Sign up

Export Citation Format

Share Document