SOME EXTENSIONS OF THE RESIDUAL LIFETIME AND ITS CONNECTION TO THE CUMULATIVE RESIDUAL ENTROPY

2011 ◽  
Vol 26 (1) ◽  
pp. 129-146 ◽  
Author(s):  
Stella Kapodistria ◽  
Georgios Psarrakos

In this article we present a sequence of random variables with weighted tail distribution functions, constructed based on the relevation transform. For this sequence, we prove several recursive formulas and connections to the residual entropy through the unifying framework of the Dickson–Hipp operator. We also give some numerical examples to evaluate our results.

Author(s):  
Farsam Misagh

Measures of cumulative residual entropy (CRE) and cumulative entropy (CE) about predictability of failure time of a system have been introduced in the studies of reliability and life testing. In this paper, cumulative distribution and survival function are used to develop weighted forms of CRE and CE. These new measures are denominated as weighted cumulative residual entropy (WCRE) and weighted cumulative entropy (WCE) and the connections of these new measures with hazard and reversed hazard rates are assessed. These information-theoretic uncertainty measures are shift-dependent and various properties of these measures are studied, including their connections with CRE, CE, mean residual lifetime, and mean inactivity time. The notions of weighted mean residual lifetime (WMRL) and weighted mean inactivity time (WMIT) are defined. The connections of weighted cumulative uncertainties with WMRL and WMIT are used to calculate the cumulative entropies of some well-known distributions. The joint versions of WCE and WCRE are defined which have the additive properties similar to those of Shannon entropy for two independent random lifetimes. The upper boundaries of newly introduced measures and the effect of linear transformations on them are considered. Finally, empirical WCRE and WCE are proposed by virtue of sample mean, sample variance, and order statistics to estimate the new measures of uncertainty. The consistency of these estimators is studied under specific choices of distributions.


2021 ◽  
pp. 2150055
Author(s):  
Qin Zhou ◽  
Pengjian Shang

Cumulative residual entropy (CRE) has been suggested as a new measure to quantify uncertainty of nonlinear time series signals. Combined with permutation entropy and Rényi entropy, we introduce a generalized measure of CRE at multiple scales, namely generalized cumulative residual entropy (GCRE), and further propose a modification of GCRE procedure by the weighting scheme — weighted generalized cumulative residual entropy (WGCRE). The GCRE and WGCRE methods are performed on the synthetic series to study properties of parameters and verify the validity of measuring complexity of the series. After that, the GCRE and WGCRE methods are applied to the US, European and Chinese stock markets. Through data analysis and statistics comparison, the proposed methods can effectively distinguish stock markets with different characteristics.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 709 ◽  
Author(s):  
Abdolsaeed Toomaj ◽  
Antonio Di Crescenzo

The generalized cumulative residual entropy is a recently defined dispersion measure. In this paper, we obtain some further results for such a measure, in relation to the generalized cumulative residual entropy and the variance of random lifetimes. We show that it has an intimate connection with the non-homogeneous Poisson process. We also get new expressions, bounds and stochastic comparisons involving such measures. Moreover, the dynamic version of the mentioned notions is studied through the residual lifetimes and suitable aging notions. In this framework we achieve some findings of interest in reliability theory, such as a characterization for the exponential distribution, various results on k-out-of-n systems, and a connection to the excess wealth order. We also obtain similar results for the generalized cumulative entropy, which is a dual measure to the generalized cumulative residual entropy.


2020 ◽  
Vol 19 (04) ◽  
pp. 2050038
Author(s):  
Keqiang Dong ◽  
Xiaofang Zhang

The fractional cumulative residual entropy is not only a powerful tool for the analysis of complex system, but also a promising way to analyze time series. In this paper, we present an approach to measure the uncertainty of non-stationary time series named higher-order multiscale fractional cumulative residual entropy. We describe how fractional cumulative residual entropy may be calculated based on second-order, third-order, fourth-order statistical moments and multiscale method. The implementation of higher-order multiscale fractional cumulative residual entropy is illustrated with simulated time series generated by uniform distribution on [0, 1]. Finally, we present the application of higher-order multiscale fractional cumulative residual entropy in logistic map time series and stock markets time series, respectively.


Sign in / Sign up

Export Citation Format

Share Document