On the method of matched asymptotic expansions

Author(s):  
L. E. Fraenkel

AbstractThe method of matched (or of ‘inner and outer’) asymptotic expansions is reviewed, with particular reference to two general techniques which have been proposed for ‘matching’; that is, for establishing a relationship between the inner and outer expansions, to finite numbers of terms, of an unknown function. It is shown that the first technique, which uses the idea of overlapping of the two expansions, can be difficult and laborious in some applications; while the second, which is the ‘asymptotic matching principle’ in the form stated by Van Dyke(13) can be incorrect. Two different sets of conditions sufficient for the validity of the asymptotic matching principle are then established, on the basis of assumptions about the structure of expressions which approximate to the desired function f(x,∈) for all relevant values of x. Finally, it is noted that in four classes of singular-perturbation problems for which complete and rigorous asymptotic theories exist, uniform approximations to the solutions have a structure which is a particular form of the general one assumed in this paper.

2018 ◽  
Vol 24 (4) ◽  
pp. 1429-1451 ◽  
Author(s):  
Paola Mannucci ◽  
Claudio Marchi ◽  
Nicoletta Tchou

We study some classes of singular perturbation problems where the dynamics of the fast variables evolve in the whole space obeying to an infinitesimal operator which is subelliptic and ergodic. We prove that the corresponding ergodic problem admits a solution which is globally Lipschitz continuous and it has at most a logarithmic growth at infinity. The main result of this paper establishes that, as ϵ → 0, the value functions of the singular perturbation problems converge locally uniformly to the solution of an effective problem whose operator and terminal data are explicitly given in terms of the invariant measure for the ergodic operator.


1995 ◽  
Vol 155 ◽  
pp. 285-286
Author(s):  
P. Smeyers ◽  
T. Van Hoolst ◽  
I. De Boeck ◽  
L. Decock

An asymptotic representation of low-frequency, linear, isentropic g-modes of a star is developed without the usual neglect of the Eulerian perturbation of the gravitational potential. Our asymptotic representation is based on the use of asymptotic expansions adequate for solutions of singular perturbation problems (see, e.g., Kevorkian & Cole 1981).Linear, isentropic oscillation modes with frequency different from zero are governed by a fourth-order system of linear, homogeneous differential equations in the radial parts of the radial displacement ξ(r) and the divergence α(r). These equations take the formThe symbols have their usual meaning. N2 is the square of the frequency of Brunt-Väisälä. The functions K1 (r), K2 (r), K3 (r), K4 (r), depend on the equilibrium model, e.g.,We introduce the small expansion parameterand assume, for the sake of simplification, N2 to be positive everywhere in the star so that the star is everywhere convectively stable.


Sign in / Sign up

Export Citation Format

Share Document