unknown function
Recently Published Documents


TOTAL DOCUMENTS

626
(FIVE YEARS 154)

H-INDEX

51
(FIVE YEARS 6)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 265
Author(s):  
Konstantina Katsarou ◽  
Charith Raj Adkar-Purushothama ◽  
Emilios Tassios ◽  
Martina Samiotaki ◽  
Christos Andronis ◽  
...  

Viroids are small, circular, highly structured pathogens that infect a broad range of plants, causing economic losses. Since their discovery in the 1970s, they have been considered as non-coding pathogens. In the last few years, the discovery of other RNA entities, similar in terms of size and structure, that were shown to be translated (e.g., cirRNAs, precursors of miRNA, RNA satellites) as well as studies showing that some viroids are located in ribosomes, have reignited the idea that viroids may be translated. In this study, we used advanced bioinformatic analysis, in vitro experiments and LC-MS/MS to search for small viroid peptides of the PSTVd. Our results suggest that in our experimental conditions, even though the circular form of PSTVd is found in ribosomes, no produced peptides were identified. This indicates that the presence of PSTVd in ribosomes is most probably not related to peptide production but rather to another unknown function that requires further study.


Author(s):  
Siyan Zhao ◽  
Chen Zhang ◽  
Matthew J. Rogers ◽  
Xuejie Zhao ◽  
Jianzhong He

As a group, Dehalococcoides dehalogenate a wide range of organohalide pollutants but the range of organohalide compounds that can be utilized for reductive dehalogenation differs among the Dehalococcoides strains. Dehalococcoides lineages cannot be reliably disambiguated in mixed communities using typical phylogenetic markers, which often confounds bioremediation efforts. Here, we describe a computational approach to identify Dehalococcoides genetic markers with improved discriminatory resolution. Screening core genes from the Dehalococcoides pangenome for degree of similarity and frequency of 100% identity found a candidate genetic marker encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function. This gene exhibits the fewest completely identical amino acid sequences and among the lowest average amino acid sequence identity in the core pangenome. Primers targeting BNR could effectively discriminate between 40 available BNR sequences ( in silico ) and 10 different Dehalococcoides isolates ( in vitro ). Amplicon sequencing of BNR fragments generated from 22 subsurface soil samples revealed a total of 109 amplicon sequence variants, suggesting a high diversity of Dehalococcoides distributed in environment. Therefore, the BNR gene can serve as an alternative genetic marker to differentiate strains of Dehalococcoides in complicated microbial communities. Importance The challenge of discriminating between phylogenetically similar but functionally distinct bacterial lineages is particularly relevant to the development of technologies seeking to exploit the metabolic or physiological characteristics of specific members of bacterial genera. A computational approach was developed to expedite screening of potential genetic markers among phylogenetically affiliated bacteria. Using this approach, a gene encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function was selected and evaluated as a genetic marker to differentiate strains of Dehalococcoides , an environmentally relevant genus of bacteria whose members can transform and detoxify a range of halogenated organic solvents and persistent organic pollutants, in complex microbial communities to demonstrate the validity of the approach. Moreover, many apparently phylogenetically distinct, currently uncharacterized Dehalococcoides were detected in environmental samples derived from contaminated sites.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2343
Author(s):  
Roman Ger

I deal with an alienation problem for the system of two fundamental Cauchy functional equations with an unknown function f mapping a ring X into an integral domain Y and preserving binary operations of addition and multiplication, respectively. The resulting syzygies obtained by adding (resp. multiplying) these two equations side by side are discussed. The first of these two syzygies was first examined by Jean Dhombres in 1988 who proved that under some additional conditions concering the domain and range rings it forces f to be a ring homomorphism (alienation phenomenon). The novelty of the present paper is to look for sufficient conditions upon f solving the other syzygy to be alien.


2021 ◽  
Author(s):  
Hannah Holland-Moritz ◽  
Chiara Vanni ◽  
Antonio Fernandez-Guerra ◽  
Andrew Bissett ◽  
Noah Fierer

AbstractGenes that remain hypothetical, uncharacterized, and unannotated comprise a substantial portion of metagenomic datasets and are likely to be particularly prevalent in soils where poorly characterized taxa predominate. Documenting the prevalence, distribution, and potential roles of these genes of unknown function is an important first step to understanding their functional contributions in soil communities. We identified genes of unknown function from 50 soil metagenomes and analyzed their environmental distributions and ecological associations. We found that genes of unknown function are prevalent in soils, particularly fine-textured, higher pH soils that harbor greater abundances of Crenarchaeota, Gemmatimonadota, Nitrospirota, and Methylomirabilota. We identified 43 dominant (abundant and ubiquitous) gene clusters of unknown function and determined their associations with soil microbial phyla and other “known” genes. We found that these dominant unknown genes were commonly associated with microbial phyla that are relatively uncharacterized, with the majority of these dominant unknown genes associated with mobile genetic elements. This work demonstrates a strategy for investigating genes of unknown function in soils, emphasizes the biological insights that can be learned by adopting this strategy, and highlights specific hypotheses that warrant further investigation regarding the functional roles of abundant and ubiquitous genes of unknown function in soil metagenomes.


Author(s):  
Gregory P. Harhay ◽  
Dayna M. Harhay ◽  
Kerry D. Brader ◽  
Timothy P. L. Smith

The genome biology underlying H. somni virulence, pathogenicity, environmental adaptability, and broad tissue tropism is understood poorly. We identified a novel H. somni 109-nt IVS stem-loop structure, of which the central portion is excised from the 23S rRNA transcript, resulting in the fragmentation of this rRNA in the H. somni isolate USDA-ARS-USMARC-63250 and the release of a 94-nt structured RNA of unknown function.


2021 ◽  
Vol 5 (4) ◽  
pp. 219
Author(s):  
Somayeh Nemati ◽  
Pedro M. Lima ◽  
Delfim F. M. Torres

We introduce a new numerical method, based on Bernoulli polynomials, for solving multiterm variable-order fractional differential equations. The variable-order fractional derivative was considered in the Caputo sense, while the Riemann–Liouville integral operator was used to give approximations for the unknown function and its variable-order derivatives. An operational matrix of variable-order fractional integration was introduced for the Bernoulli functions. By assuming that the solution of the problem is sufficiently smooth, we approximated a given order of its derivative using Bernoulli polynomials. Then, we used the introduced operational matrix to find some approximations for the unknown function and its derivatives. Using these approximations and some collocation points, the problem was reduced to the solution of a system of nonlinear algebraic equations. An error estimate is given for the approximate solution obtained by the proposed method. Finally, five illustrative examples were considered to demonstrate the applicability and high accuracy of the proposed technique, comparing our results with the ones obtained by existing methods in the literature and making clear the novelty of the work. The numerical results showed that the new method is efficient, giving high-accuracy approximate solutions even with a small number of basis functions and when the solution to the problem is not infinitely differentiable, providing better results and a smaller number of basis functions when compared to state-of-the-art methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Neda Khaksari ◽  
Mahmoud Paripour ◽  
Nasrin Karamikabir

In this work, a numerical method is applied for obtaining numerical solutions of Fredholm two-dimensional functional linear integral equations based on the radial basis function (RBF). To find the approximate solutions of these types of equations, first, we approximate the unknown function as a finite series in terms of basic functions. Then, by using the proposed method, we give a formula for determining the unknown function. Using this formula, we obtain a numerical method for solving Fredholm two-dimensional functional linear integral equations. Using the proposed method, we get a system of linear algebraic equations which are solved by an iteration method. In the end, the accuracy and applicability of the proposed method are shown through some numerical applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258385
Author(s):  
Nikolina Babic ◽  
Filip Kovacic

The efficacy of antibiotics to treat bacterial infections declines rapidly due to antibiotic resistance. This problem has stimulated the development of novel antibiotics, but most attempts have failed. Consequently, the idea of mining uncharacterized genes of pathogens to identify potential targets for entirely new classes of antibiotics was proposed. Without knowing the biochemical function of a protein, it is difficult to validate its potential for drug targeting; therefore, the functional characterization of bacterial proteins of unknown function must be accelerated. Here, we present a paradigm for comprehensively predicting the biochemical functions of a large set of proteins encoded by hypothetical genes in human pathogens to identify candidate drug targets. A high-throughput approach based on homology modelling with ten templates per target protein was applied to the set of 2103 P. aeruginosa proteins encoded by hypothetical genes. The >21000 homology modelling results obtained and available biological and biochemical information about several thousand templates were scrutinized to predict the function of reliably modelled proteins of unknown function. This approach resulted in assigning one or often multiple putative functions to hundreds of enzymes, ligand-binding proteins and transporters. New biochemical functions were predicted for 41 proteins whose essential or virulence-related roles in P. aeruginosa were already experimentally demonstrated. Eleven of them were shortlisted as promising drug targets that participate in essential pathways (maintaining genome and cell wall integrity), virulence-related processes (adhesion, cell motility, host recognition) or antibiotic resistance, which are general drug targets. These proteins are conserved in other WHO priority pathogens but not in humans; therefore, they represent high-potential targets for preclinical studies. These and many more biochemical functions assigned to uncharacterized proteins of P. aeruginosa, made available as PaPUF database, may guide the design of experimental screening of inhibitors, which is a crucial step towards the validation of the highest-potential targets for the development of novel drugs against P. aeruginosa and other high-priority pathogens.


2021 ◽  
Author(s):  
Virginia M Howick ◽  
Lori Peacock ◽  
Chris Kay ◽  
Clare Collett ◽  
Wendy Gibson ◽  
...  

Early diverging lineages such as trypanosomes can provide clues to the evolution of sexual reproduction in eukaryotes. In Trypanosoma brucei, the pathogen that causes Human African Trypanosomiasis, sexual reproduction occurs in the salivary glands of the insect host, but analysis of the molecular signatures that define these sexual forms is complicated because they mingle with more numerous, mitotically-dividing developmental stages. We used single-cell RNA-sequencing (scRNAseq) to profile 388 individual trypanosomes from midgut, proventriculus, and salivary glands of infected tsetse flies allowing us to identify tissue-specific cell types. Further investigation of salivary gland parasite transcriptomes revealed fine-scale changes in gene expression over a developmental progression from putative sexual forms through metacyclics expressing variant surface glycoprotein genes. The cluster of cells potentially containing sexual forms was characterised by high level transcription of the gamete fusion protein HAP2, together with an array of surface proteins and several genes of unknown function. We linked these expression patterns to distinct morphological forms using immunofluorescence assays and reporter gene expression to demonstrate that the kinetoplastid-conserved gene Tb927.10.12080 is exclusively expressed at high levels by meiotic intermediates and gametes. We speculate that this protein, currently of unknown function, plays a role in gamete formation and/or fusion.


Sign in / Sign up

Export Citation Format

Share Document