lipschitz continuous
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 152)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-30
Author(s):  
Jacob Laurel ◽  
Rem Yang ◽  
Gagandeep Singh ◽  
Sasa Misailovic

We present a novel abstraction for bounding the Clarke Jacobian of a Lipschitz continuous, but not necessarily differentiable function over a local input region. To do so, we leverage a novel abstract domain built upon dual numbers, adapted to soundly over-approximate all first derivatives needed to compute the Clarke Jacobian. We formally prove that our novel forward-mode dual interval evaluation produces a sound, interval domain-based over-approximation of the true Clarke Jacobian for a given input region. Due to the generality of our formalism, we can compute and analyze interval Clarke Jacobians for a broader class of functions than previous works supported – specifically, arbitrary compositions of neural networks with Lipschitz, but non-differentiable perturbations. We implement our technique in a tool called DeepJ and evaluate it on multiple deep neural networks and non-differentiable input perturbations to showcase both the generality and scalability of our analysis. Concretely, we can obtain interval Clarke Jacobians to analyze Lipschitz robustness and local optimization landscapes of both fully-connected and convolutional neural networks for rotational, contrast variation, and haze perturbations, as well as their compositions.


Author(s):  
Christian Füllner ◽  
Steffen Rebennack

AbstractWe propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an $$\varepsilon $$ ε -optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jingyu Wang ◽  
Yejuan Wang ◽  
Tomás Caraballo

<p style='text-indent:20px;'>This paper is devoted to the asymptotic behavior of solutions to a non-autonomous stochastic wave equation with infinite delays and additive white noise. The nonlinear terms of the equation are not expected to be Lipschitz continuous, but only satisfy continuity assumptions along with growth conditions, under which the uniqueness of the solutions may not hold. Using the theory of multi-valued non-autonomous random dynamical systems, we prove the existence and measurability of a compact global pullback attractor.</p>


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Marco Cantarini ◽  
Lucian Coroianu ◽  
Danilo Costarelli ◽  
Sorin G. Gal ◽  
Gianluca Vinti

In this paper, we consider the max-product neural network operators of the Kantorovich type based on certain linear combinations of sigmoidal and ReLU activation functions. In general, it is well-known that max-product type operators have applications in problems related to probability and fuzzy theory, involving both real and interval/set valued functions. In particular, here we face inverse approximation problems for the above family of sub-linear operators. We first establish their saturation order for a certain class of functions; i.e., we show that if a continuous and non-decreasing function f can be approximated by a rate of convergence higher than 1/n, as n goes to +∞, then f must be a constant. Furthermore, we prove a local inverse theorem of approximation; i.e., assuming that f can be approximated with a rate of convergence of 1/n, then f turns out to be a Lipschitz continuous function.


Author(s):  
Zhongmin Qian ◽  
Yuhan Yao

AbstractWe study a class of McKean–Vlasov type stochastic differential equations (SDEs) which arise from the random vortex dynamics and other physics models. By introducing a new approach we resolve the existence and uniqueness of both the weak and strong solutions for the McKean–Vlasov stochastic differential equations whose coefficients are defined in terms of singular integral kernels such as the Biot–Savart kernel. These SDEs which involve the distributions of solutions are in general not Lipschitz continuous with respect to the usual distances on the space of distributions such as the Wasserstein distance. Therefore there is an obstacle in adapting the ordinary SDE method for the study of this class of SDEs, and the conventional methods seem not appropriate for dealing with such distributional SDEs which appear in applications such as fluid mechanics.


2021 ◽  
Vol 5 (4) ◽  
pp. 279
Author(s):  
Daliang Zhao

Under a new generalized definition of exact controllability we introduced and with a appropriately constructed time delay term in a special complete space to overcome the delay-induced-difficulty, we establish the sufficient conditions of the exact controllability for a class of impulsive fractional nonlinear evolution equations with delay by using the resolvent operator theory and the theory of nonlinear functional analysis. Nonlinearity in the system is only supposed to be continuous rather than Lipschitz continuous by contrast. The results obtained in the present work are generalizations and continuations of the recent results on this issue. Further, an example is presented to show the effectiveness of the new results.


Sign in / Sign up

Export Citation Format

Share Document