scholarly journals On the intersection of free subgroups in free products of groups

2008 ◽  
Vol 144 (3) ◽  
pp. 511-534 ◽  
Author(s):  
WARREN DICKS ◽  
S. V. IVANOV

AbstractLet (Gi | i ∈ I) be a family of groups, let F be a free group, and let $G = F \ast \mathop{\text{\Large $*$}}_{i\in I} G_i,$ the free product of F and all the Gi.Let $\mathcal{F}$ denote the set of all finitely generated subgroups H of G which have the property that, for each g ∈ G and each i ∈ I, $H \cap G_i^{g} = \{1\}.$ By the Kurosh Subgroup Theorem, every element of $\mathcal{F}$ is a free group. For each free group H, the reduced rank of H, denoted r(H), is defined as $\max \{\rank(H) -1, 0\} \in \naturals \cup \{\infty\} \subseteq [0,\infty].$ To avoid the vacuous case, we make the additional assumption that $\mathcal{F}$ contains a non-cyclic group, and we define We are interested in precise bounds for $\upp$. In the special case where I is empty, Hanna Neumann proved that $\upp$ ∈ [1,2], and conjectured that $\upp$ = 1; fifty years later, this interval has not been reduced.With the understanding that ∞/(∞ − 2) is 1, we define Generalizing Hanna Neumann's theorem we prove that $\upp \in [\fun, 2\fun]$, and, moreover, $\upp = 2\fun$ whenever G has 2-torsion. Since $\upp$ is finite, $\mathcal{F}$ is closed under finite intersections. Generalizing Hanna Neumann's conjecture, we conjecture that $\upp = \fun$ whenever G does not have 2-torsion.

2001 ◽  
Vol 11 (03) ◽  
pp. 281-290 ◽  
Author(s):  
S. V. IVANOV

A subgroup H of a free product [Formula: see text] of groups Gα, α∈ I, is termed factor free if for every [Formula: see text] and β∈I one has SHS-1∩Gβ= {1} (by Kurosh theorem on subgroups of free products, factor free subgroups are free). If K is a finitely generated free group, denote [Formula: see text], where r(K) is the rank of K. It has earlier been proved by the author that if H, K are finitely generated factor free subgroups of [Formula: see text] then [Formula: see text]. It is proved in the article that this estimate is sharp and cannot be improved, that is, there are factor free subgroups H, K in [Formula: see text] so that [Formula: see text] and [Formula: see text]. It is also proved that if the factors Gα, α∈ I, are linearly ordered groups and H, K are finitely generated factor free subgroups of [Formula: see text] then [Formula: see text].


1999 ◽  
Vol 09 (05) ◽  
pp. 521-528 ◽  
Author(s):  
S. V. IVANOV

A subgroup H of a free product [Formula: see text] of groups Gα, α∈ I, is called factor free if for every [Formula: see text] and β ∈ I one has S H S-1∩ Gβ = {1} (by Kurosh theorem on subgroups of free products, factor free subgroups are free). If K is a finitely generated free group, denote [Formula: see text], where r(K) is the rank of K. It is proven that if H, K are finitely generated factor free subgroups of a free product [Formula: see text] then [Formula: see text]. It is also shown that the inequality [Formula: see text] of Hanna Neumann conjecture on subgroups of free groups does not hold for factor free subgroups of free products.


2019 ◽  
Vol 101 (2) ◽  
pp. 266-271
Author(s):  
ANTON A. KLYACHKO ◽  
ANASTASIA N. PONFILENKO

This note contains a (short) proof of the following generalisation of the Friedman–Mineyev theorem (earlier known as the Hanna Neumann conjecture): if $A$ and $B$ are nontrivial free subgroups of a virtually free group containing a free subgroup of index $n$, then $\text{rank}(A\cap B)-1\leq n\cdot (\text{rank}(A)-1)\cdot (\text{rank}(B)-1)$. In addition, we obtain a virtually-free-product analogue of this result.


2007 ◽  
Vol 310 (1) ◽  
pp. 57-69
Author(s):  
N.S. Romanovskii ◽  
John S. Wilson

1968 ◽  
Vol 8 (3) ◽  
pp. 631-637 ◽  
Author(s):  
R. A. Bryce

It is a consequence of the Kurosh subgroup theorem for free products that if a group has two decompositions where each Ai and each Bj is indecomposable, then I and J can be placed in one-to-one correspondence so that corresponding groups if not conjugate are infinite cycles. We prove here a corresponding result for free products with a normal amalgamation.


1979 ◽  
Vol 31 (6) ◽  
pp. 1329-1338 ◽  
Author(s):  
A. M. Brunner ◽  
R. G. Burns

In [5] M. Hall Jr. proved, without stating it explicitly, that every finitely generated subgroup of a free group is a free factor of a subgroup of finite index. This result was made explicit, and used to give simpler proofs of known results, in [1] and [7]. The standard generalization to free products was given in [2]: If, following [13], we call a group in which every finitely generated subgroup is a free factor of a subgroup of finite index an M. Hall group, then a free product of M. Hall groups is again an M. Hall group. The recent appearance of [13], in which this result is reproved, and the rather restrictive nature of the property of being an M. Hall group, led us to attempt to determine the structure of such groups. In this paper we go a considerable way towards achieving this for those M. Hall groups which are both finitely generated and accessible.


1970 ◽  
Vol 3 (1) ◽  
pp. 85-96 ◽  
Author(s):  
J. L. Dyer

This paper explores a five-lemma situation in the context of a free product of a family of groups with amalgamated subgroups (that is, a colimit of an appropriate diagram in the category of groups). In particular, for two families {Aα}, {Bα} of groups with amalgamated subgroups {Aαβ}, {Bαβ} and free products A, B we assume the existence of homomorphisms Aα → Bα whose restrictions Aαβ → Bαβ are isomorphisms and which induce an isomorphism A → B between the products. We show that the usual five-lemma conclusion is false, in that the morphisms Aα → Bα are in general neither monic nor epic. However, if all Bα → B are monic, Aα → Bα is always epic; and if Aα → A is monic, for all α, then Aα → Bα is an isomorphism.


Author(s):  
E. A. Milne

In a recent paper in these Proceedings, Dr G. C. McVittie has published some criticisms of kinematical relativity. These criticisms are to a large extent based on his formula (4.10), namely,It must be stated at the outset that McVittie's interpretation of his derivation of (1) as a derivation of “Milne's formula for the acceleration of a ‘free particle moving in the presence of a substratum,’ for the special case of one spatial co-ordinate only” is wrong. McVittie does not derive the result, as he claims, from what he calls the “axioms of kinematical relativity” alone; he deduces it from these axioms together with an additional assumption, which is equivalent to begging the answer to the whole problem it was my object to solve. Instead of considering a free particle, as I did—that is, a particle whose motion we do not a priori know—he prescribes a priori the motion of his particle as being constrained to obey the rule, in his notation,


1966 ◽  
Vol 62 (2) ◽  
pp. 129-134 ◽  
Author(s):  
John Stallengs

The free product A* B of groups A and B can be described in two ways.We can construct the set of reduced words in A and B. Define a binary operation on by concatenating two words and performing as many reductions as possible. Prove that is a group; the difficult step is the proof of associativity. Define A * B = .


Sign in / Sign up

Export Citation Format

Share Document