Orlicz-Poincaré inequalities, maximal functions and AΦ-conditions

Author(s):  
Jana Björn

For a measure μ on ℝn (or on a doubling metric measure space) and a Young function Φ, we define two versions of Orlicz–Poincaré inequalities as generalizations of the usual p-Poincaré inequality. It is shown that, on ℝ, one of them is equivalent to the boundedness of the Hardy–Littlewood maximal operator from LΦ(ℝ,μ) to LΦ(ℝ,μ), while the other is equivalent to a generalization of the Muckenhoupt Ap-condition. While one direction in these equivalences is valid only on ℝ, the other holds in the general setting of doubling metric measure spaces. We also characterize both Orlicz–Poincaré inequalities on metric measure spaces by means of pointwise inequalities involving maximal functions of the gradient.

2004 ◽  
Vol 95 (2) ◽  
pp. 299 ◽  
Author(s):  
Stephen Keith ◽  
Kai Rajala

We show that, in a complete metric measure space equipped with a doubling Borel regular measure, the Poincaré inequality with upper gradients introduced by Heinonen and Koskela [3] is equivalent to the Poincaré inequality with "approximate Lipschitz constants" used by Semmes in [9].


2015 ◽  
Vol 3 (1) ◽  

Abstract A theorem of Lusin states that every Borel function onRis equal almost everywhere to the derivative of a continuous function. This result was later generalized to Rn in works of Alberti and Moonens-Pfeffer. In this note, we prove direct analogs of these results on a large class of metric measure spaces, those with doubling measures and Poincaré inequalities, which admit a form of differentiation by a famous theorem of Cheeger.


2013 ◽  
Vol 38 ◽  
pp. 287-308 ◽  
Author(s):  
Estibalitz Durand-Cartagena ◽  
Jesús A. Jaramillo ◽  
Nageswari Shanmugalingam

2016 ◽  
Vol 49 (1) ◽  
Author(s):  
Juha Kinnunen ◽  
Pilar Silvestre

AbstractThis note investigates weaker conditions than a Poincaré inequality in analysis on metric measure spaces. We discuss two resistance conditions which are stated in terms of capacities. We show that these conditions can be characterized by versions of Sobolev–Poincaré inequalities. As a consequence, we obtain so-called Lip-lip condition related to pointwise Lipschitz constants. Moreover, we show that the pointwise Hardy inequalities and uniform fatness conditions are equivalent under an appropriate resistance condition.


2008 ◽  
Vol 51 (2) ◽  
pp. 529-543 ◽  
Author(s):  
Feng-Yu Wang

AbstractCorresponding to known results on Orlicz–Sobolev inequalities which are stronger than the Poincaré inequality, this paper studies the weaker Orlicz–Poincaré inequality. More precisely, for any Young function $\varPhi$ whose growth is slower than quadric, the Orlicz–Poincaré inequality$$ \|f\|_\varPhi^2\le C\E(f,f),\qquad\mu(f):=\int f\,\mathrm{d}\mu=0 $$is studied by using the well-developed weak Poincaré inequalities, where $\E$ is a conservative Dirichlet form on $L^2(\mu)$ for some probability measure $\mu$. In particular, criteria and concrete sharp examples of this inequality are presented for $\varPhi(r)=r^p$ $(p\in[1,2))$ and $\varPhi(r)= r^2\log^{-\delta}(\mathrm{e} +r^2)$ $(\delta>0)$. Concentration of measures and analogous results for non-conservative Dirichlet forms are also obtained. As an application, the convergence rate of porous media equations is described.


Sign in / Sign up

Export Citation Format

Share Document