Projection status of calbindin- and parvalbumin-immunoreactive neurons in the superficial layers of the rat's superior colliculus

1997 ◽  
Vol 14 (2) ◽  
pp. 277-286 ◽  
Author(s):  
Richard D. Lane ◽  
Dawn M. Allan ◽  
Carol A. Bennett-Clarke ◽  
David L. Howell ◽  
Robert W. Rhoades

AbstractImmunocytochemistry and retrograde labeling were used to define the thalamic projections of calbindin- and parvalbumin-containing cells in superficial layers of the rat's superior colliculus (SC). Quantitative analysis revealed that 90.8 ± 2.2% (mean ± standard deviation) of the calbindin-immunoreactive neurons in the stratum griseum superficiale (SGS) projected to the dorsal lateral geniculate nucleus (LGNd) and that 91.3 ± 4.3% of calbindin-immunoreactive neurons in the stratum opticum (SO) projected to the lateral posterior nucleus (LP). In contrast, only 17.3 ± 2.5% of parvalbumin-immunoreactive neurons in the SGS were found to project to the LGNd and 16.5 ± 3.1% of the parvalbumin-immunoreactive SO cells were retrogradely labeled after LP injections. Few of the parvalbumin-immunoreactive neurons in either the SGS (7.2 ± 2.5%) or the SO (9.2 ± 2.5%) were GABA positive. The retrograde-labeling results suggest that parvalbumin-immunoreactive neurons in the rat's SO and SGS may either be primarily interneurons or have descending projections, while calbindin-containing cells are primarily thalamic projection neurons. These results are consistent with data from other rodents, but almost exactly the opposite of data that have been reported for the cat for these same populations of SC projection neurons. Such interspecies differences raise questions regarding the functional importance of expressing one calcium-binding protein versus another in a specific neuronal population.

1997 ◽  
Vol 14 (2) ◽  
pp. 387-393 ◽  
Author(s):  
Chang-Jin Jeon ◽  
Michael R. Gurski ◽  
R. Ranney Mize

AbstractGlutamate is the probable neurotransmitter of both retinal and cortical afferents to the cat superior colliculus (SC). The present study shows that glutamate is also contained in many postsynaptic neurons in SC. The distribution, morphology, and ultrastructure of neurons in SC were examined using glutamate antibody immunocytochemistry. Labeled cells were widely distributed throughout, but a specific laminar pattern was evident. Relatively few cells were found in the zonal and upper superficial gray layers (SGL). A dense band of intensely labeled neurons was found within the deep superficial gray and upper optic layers. Many cells were also labeled in the deeper layers. Labeled cells had varied sizes and morphologies. Soma diameters ranged from 9–67 μm, with a mean of 22 μm. Cells with stellate, vertical fusiform, and multipolar morphologies were labeled. Cells in the deep subdivision all had morphologies and sizes typical of projection neurons. To determine if labeled cells in the dense band were also projection neurons, WGA-HRP was injected into the lateral posterior nucleus and these sections were double-labeled with the glutamate antibody. Over one-half of cells in the dense band that were labeled by HRP were also obviously labeled by antibody. At the electron-microscope level, both medium- and large-sized neurons were also labeled by glutamate antibodies. These cells had different but characteristic morphologies.


1983 ◽  
Vol 288 (1-2) ◽  
pp. 315-319 ◽  
Author(s):  
James F. Donnelly ◽  
Scott M. Thompson ◽  
Richard T. Robertson

1987 ◽  
Vol 35 (2) ◽  
pp. 115 ◽  
Author(s):  
AM Harman ◽  
DP Crewther ◽  
JE Nelson ◽  
SG Crewther

The retinal projections of the northern native cat, Dasyurus hallucatus, were studied by the anterograde transport of tritiated proline and by autoradiography. Seven regions in the brain were found to receive direct retinal projections: (1) the suprachiasmatic nucleus; (2) the dorsal lateral geniculate nucleus; (3) the ventral lateral geniculate nucleus; (4) the lateral posterior nucleus; (5) the nuclei of the accessory optic tract; (6) the pretectal nuclei; (7) the superior colliculus. All nuclei studied received a bilateral retinal projection except the medial terminal nucleus of the accessory optic system, in which only a contralateral input was found. The contralateral eye had a greater input in all cases. As with the related species, Dasyurus viverrinus, there is extensive binocular overlap in the dorsal lateral geniculate nucleus (LGNd). In the LGNd contralateral to the injected eye, the autoradiographs show four contralateral terminal bands occupying most of the nucleus. The axonal terminations in the ipsilateral LGNd are more diffuse but show a faint lamination pattern of four bands. The ventral portion of the LGNd receives only contralateral retinal input, and therefore probably represents the monocular visual field. The other principal termination of the optic nerve, the superior colliculus, has a predominantly contralateral input to both sublayers of the stratum griseum superficiale. However, the ipsilateral fibres terminate only in patches in the more inferior sublayer.


1994 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Ingmar Blümcke ◽  
Eduardo Weruaga ◽  
Sandor Kasas ◽  
Anita E. Hendrickson ◽  
Marco R. Celio

AbstractWe analyzed the immunohistochemical distribution of the two calcium-binding proteins, parvalbumin (PV) and calbindin D-28k (CB), in the primary visual cortex and lateral dorsal geniculate nucleus (dLGN) of monocularly enucleated macaque monkeys (Macaca fascicularis and Macaca nemestrind) in order to determine how the expression of PV and CB is affected by functional inactivity. The monkeys survived 1–17 weeks after monocular enucleation. The distribution pattern of each of the proteins was examined immunocytochemically using monoclonal antibodies and compared with that of the metabolic marker cytochrome oxidase (CO). We recorded manually the number of immunostained neurons and estimated the concentration of immunoreactive staining product using a computerized image-acquisition system. Our results indicate a decrease of approximately 30% in the labeling of PV-immunoreactive (ir) neuropil particularly in those layers of denervated ocular-dominance columns receiving the geniculocortical input. There was no change in the number of PV-ir neurons in any compartment irrespective of the enucleation interval. For CB-ir, we found a 20% decrease in the neuropil labeling in layer 2/3 of the denervated ocular-dominance columns. In addition, a subset of pyramidal CB-ir neurons in layers 2 and 4B, which are weakly stained in control animals, showed decreased labeling. In the dLGN of enucleated animals, PV-ir and CB-ir were decreased only in the neuropil of the denervated layers.From these results, we conclude that cortical interneurons and geniculate projection neurons still express PV and CB in their cell bodies after disruption of the direct functional input from one eye. The only distinct decrease of PV and CB expression is seen in axon terminals from retinal ganglion cells in the dLGN, and in the axons and terminals of both geniculocortical projection cells and cortical interneurons in the cerebral cortex.


Sign in / Sign up

Export Citation Format

Share Document