anterograde transport
Recently Published Documents


TOTAL DOCUMENTS

349
(FIVE YEARS 40)

H-INDEX

66
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Nolan R. McGrady ◽  
Silvia Pasini ◽  
Robert O. Baratta ◽  
Brian J. Del Buono ◽  
Eric Schlumpf ◽  
...  

Optic neuropathies are a major cause of visual disabilities worldwide, causing irreversible vision loss through the degeneration of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Chief among these is glaucoma, in which sensitivity to intraocular pressure (IOP) leads to RGC axon dysfunction followed by outright degeneration of the optic projection. Current treatments focus entirely on lowering IOP through topical hypotensive drugs, surgery to facilitate aqueous fluid outflow, or both. Despite this investment in time and resources, many patients continue to lose vision, underscoring the need for new therapeutics that target neurodegeneration directly. One element of progression in glaucoma involves matrix metalloproteinase (MMP) remodeling of the collagen-rich extracellular milieu of RGC axons as they exit the retina through the optic nerve head. Thus, we investigated the ability of collagen mimetic peptides (CMPs) representing various single strand fractions of triple helix human type I collagen to protect RGC axons in an inducible model of glaucoma. First, using dorsal root ganglia maintained in vitro on human type I collagen, we found that multiple CMPs significantly promote neurite outgrowth (+35%) compared to vehicle following MMP-induced fragmentation of the α1(I) and α2(I) chains. We then applied CMP to adult mouse eyes in vivo following microbead occlusion to elevate IOP and determined its influence on anterograde axon transport to the superior colliculus, the primary RGC projection target in rodents. In glaucoma models, sensitivity to IOP causes early degradation in axon function, including anterograde transport from retina to central brain targets. We found that CMP treatment rescued anterograde transport following a 3-week +50% elevation in IOP. These results suggest that CMPs generally may represent a novel therapeutic to supplement existing treatments or as a neuroprotective option for patients who do not respond to IOP-lowering regimens.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1013
Author(s):  
Carsten Schmelter ◽  
Kristian Nzogang Fomo ◽  
Natarajan Perumal ◽  
Norbert Pfeiffer ◽  
Franz H. Grus

The mitochondrial serine protease HTRA2 has many versatile biological functions ranging from being an important regulator of apoptosis to being an essential component for neuronal cell survival and mitochondrial homeostasis. Loss of HTRA2 protease function is known to cause neurodegeneration, whereas overactivation of its proteolytic function is associated with cell death and inflammation. In accordance with this, our group verified in a recent study that the synthetic peptide ASGYTFTNYGLSWVR, encoding the hypervariable sequence part of an antibody, showed a high affinity for the target protein HTRA2 and triggered neuroprotection in an in vitro organ culture model for glaucoma. To unravel this neuroprotective mechanism, the present study showed for the first time that the synthetic CDR1 peptide significantly (p < 0.01) inhibited the proteolytic activity of HTRA2 up to 50% using a specific protease function assay. Furthermore, using state-of-the-art co-immunoprecipitation technologies in combination with highresolution MS, we identified 50 significant protein interaction partners of HTRA2 in the retina of house swine (p < 0.01; log2 fold change > 1.5). Interestingly, 72% of the HTRA2-specific interactions (23 of 31 binders) were inhibited by additional treatment with UCF-101 (HTRA2 protease inhibitor) or the synthetic CDR peptide. On the other hand, the remaining 19 binders of HTRA2 were exclusively identified in the UCF101 and/or CDR group. However, many of the interactors were involved in the ER to Golgi anterograde transport (e.g., AP3D1), aggrephagy (e.g., PSMC1), and the pyruvate metabolism/citric acid cycle (e.g., SHMT2), and illustrated the complex protein interaction networks of HTRA2 in neurological tissues. In conclusion, the present study provides, for the first time, a comprehensive protein catalogue of HTRA2-specific interaction partners in the retina, and will serve as reference map in the future for studies focusing on HTRA2mediated neurodegeneration.


Virology ◽  
2021 ◽  
Vol 559 ◽  
pp. 65-73
Author(s):  
Grayson DuRaine ◽  
David C. Johnson

2021 ◽  
Vol 15 ◽  
Author(s):  
Cinthia Aguilera ◽  
Stefan Hümmer ◽  
Marc Masanas ◽  
Elisabeth Gabau ◽  
Miriam Guitart ◽  
...  

KIF1A is a microtubule-dependent motor protein responsible for fast anterograde transport of synaptic vesicle precursors in neurons. Pathogenic variants in KIF1A have been associated with a wide spectrum of neurological disorders. Here, we report a patient presenting a severe neurodevelopmental disorder carrying a novel de novo missense variant p.Arg169Thr (R169T) in the KIF1A motor domain. The clinical features present in our patient match with those reported for NESCAV syndrome including severe developmental delay, spastic paraparesis, motor sensory neuropathy, bilateral optic nerve atrophy, progressive cerebellar atrophy, epilepsy, ataxia, and hypotonia. Here, we demonstrate that the microtubule-stimulated ATPase activity of the KIF1A is strongly reduced in the motor domain of the R169T variant. Supporting this, in silico structural modeling suggests that this variant impairs the interaction of the KIF1A motor domain with microtubules. The characterization of the molecular effect of the R169T variant on the KIF1A protein together with the presence of the typical clinical features indicates its causal pathogenic effect.


2021 ◽  
Author(s):  
Tal Keren-Kaplan ◽  
Amra Saric ◽  
Saikat Ghosh ◽  
Chad Williamson ◽  
Rui Jia ◽  
...  

Abstract The small GTPase ARL8 associates with lysosomes and recruits several effectors that mediate coupling to kinesins for anterograde transport, as well as tethering for eventual fusion with other organelles. Herein we report the identification of the “RUN- and FYVE-domain-containing” proteins RUFY3 and RUFY4 as novel ARL8 effectors that couple lysosomes to dynein-dynactin for retrograde transport. Using various biochemical approaches, we find that RUFY3/4 interact with both GTP-bound ARL8 and dynein-dynactin. In addition, we show that RUFY3/4 are both necessary and sufficient for concentration of lysosomes in the juxtanuclear area of the cell. RUFY3/4 also promote retrograde transport of lysosomes in the axon of hippocampal neurons. The function of RUFY3/4 in retrograde transport is required for juxtanuclear redistribution of lysosomes upon serum starvation or cytoplasmic alkalinization, and may underlie the reported roles of RUFY3/4 in axon development/degeneration, cancer and immunity. These studies thus establish RUFY3/4 as novel ARL8-dependent, dynein-dynactin adaptors, and highlight the role of ARL8 in the regulation of both anterograde and retrograde lysosome transport.  


2021 ◽  
Author(s):  
Gaurav Kumar ◽  
Prateek Chawla ◽  
Sanya Chadha ◽  
Sheetal Sharma ◽  
Kanupriya Sethi ◽  
...  

Abstract The whole-cell scale spatial organization of lysosomes is regulated by their bidirectional motility on microtubule tracks. Small GTP-binding (G) protein, Arl8b, stimulates the anterograde transport of lysosomes by recruiting adaptor protein SKIP (also known as PLEKHM2), which in turn couples the microtubule motor kinesin-1. Here, we have identified an Arl8b effector, RUN and FYVE domain-containing protein family member 3, RUFY3, which drives the retrograde transport of lysosomes. Artificial targeting of RUFY3 to the surface of mitochondria was sufficient to drive their perinuclear positioning. We find that RUFY3 interacts with the JIP4-Dynein-Dynactin complex and mediates Arl8b association with the retrograde motor complex. The mobile fraction of the total lysosomes per cell was significantly enhanced upon RUFY3 depletion, suggesting that RUFY3 maintains the lysosomes clustering within the perinuclear cloud. Expectedly, RUFY3 knockdown disrupted the perinuclear positioning of lysosomes upon nutrient starvation and/or serum depletion, although lysosome continued to undergo fusion with autophagosomes. Interestingly, lysosome fission events were more frequent in RUFY3-depleted cells and accordingly, there was a striking reduction in lysosome size, an effect that was also observed in dynein and JIP4 depleted cells. These findings indicate that the dynein-dependent “perinuclear cloud” arrangement of lysosomes also regulates the size of these proteolytic compartments and, likely, their cellular roles.


2021 ◽  
Vol 220 (4) ◽  
Author(s):  
Seth G. Haddix ◽  
Matthew N. Rasband

In this issue, Wang et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.201911114) describe a phenomenon in which neuromuscular junction synapse elimination triggers myelination of terminal motor axon branches. They propose a mechanism initiated by synaptic pruning that depends on synaptic activity, cytoskeletal maturation, and the associated anterograde transport of trophic factors including Neuregulin 1-III.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xu-Qiao Chen ◽  
Utpal Das ◽  
Gooho Park ◽  
William C. Mobley

AbstractBackgroundImpaired axonal transport may contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD) and Down syndrome (DS). Axonal transport is a complex process in which specific motor proteins move cargoes to and from neuronal cell bodies and their processes. Inconsistent reports point to the changes in AD in the levels of the classical anterograde motor protein kinesin family member 5 (KIF5) and the primary neuronal KIF regulator kinesin light chain 1 (KLC1), raising the possibility that anterograde transport is compromised in AD.Methods and materialsTo address inconsistencies and determine if the shared pathologies in AD and elderly DS subjects with dementia (AD in DS; AD-DS) extend to the changes in KIF5 and KLC1, we measured the levels of all the three KIF5 family members and KLC1 in the AD and AD-DS frontal cortex and AD temporal cortex and cerebellum in samples taken with a short postmortem interval. To support future studies to explore the cell biological basis for any changes detected, we also examined the levels of these proteins in the brains of young and aged adult mice in the Dp (16)1Yey/+ (Dp16) mouse model of DS and J20 mouse model of AD.ResultsThere were no changes in comparison with controls in KIF5 family members in either the AD or AD-DS samples when normalized to either β-actin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Interestingly, however, samples from control brains as well as from AD and AD-DS demonstrated strong positive correlations between the levels of KIF5 family members, suggesting positive co-regulated expression. Importantly, while earlier reports pointed to a negative correlation between the levels of the amyloid precursor protein (APP) and KIF5A levels, we found the opposite to be true in AD-DS; this was especially striking given triplication of the APP gene, with increased APP protein levels. AD and control samples showed positive correlations between fl-hAPP and KIF5 members, but they were less consistent. In contrast to the findings for KIF5, the levels of KLC1 were downregulated in the frontal cortex of both AD and AD-DS brains; interestingly, this change was not seen in the AD temporal cortex or cerebellum. As postmortem interval has a negative effect on the levels of KLC1, but not KIF5 members, we analyzed a subset of samples with a very short postmortem interval (PMI) (≤ 6 h), a PMI that was not significantly correlated with the levels of KLC1 in either AD or AD-DS samples; we confirmed the presence of a statistically significant reduction of KLC1 in AD and AD-DS brains as compared with control brains. Studies comparing Dp16 to its euploid control recapitulated human studies in demonstrating no change in KIF5 levels and a positive correlation between the levels of KIF5 family members. J20 mice also showed normal KIF5 levels. However, unlike the AD and AD-DS frontal cortex, KLC1 levels were not reduced in the brains of Dp16 or J20 mice.ConclusionThese data point to significant reductions in KLC1 in AD and AD-DS. In so doing, they raise the possibility of compromised KLC1-mediated axonal transport in these conditions, a posit that can now be pursued in model systems in which KLC1 expression is reduced.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Christopher E. Denes ◽  
Timothy P. Newsome ◽  
Monica Miranda-Saksena ◽  
Anthony L. Cunningham ◽  
Russell J. Diefenbach

HSV-1 envelope glycoprotein E (gE) is important for viral egress and cell-to-cell spread but the host protein(s) involved in these functions have yet to be determined. We aimed to investigate a role for the Arp2/3 complex and actin regulation in viral egress based on the identification of a WAVE Regulatory Complex (WRC) Interacting Receptor Sequence (WIRS) in the cytoplasmic tail (CT) of gE. A WIRS-dependent interaction between the gE(CT) and subunits of the WRC was demonstrated by GST-pulldown assay and a role for the Arp2/3 complex in cell-to-cell spread was also observed by plaque assay. Subsequent study of a recombinant HSV-1 gE WIRS-mutant found no significant changes to viral production and release based on growth kinetics studies, or changes to plaque and comet size in various cell types, suggesting no function for the motif in cell-to-cell spread. GFP-Trap pulldown and proximity ligation assays were unable to confirm a WIRS-dependent interaction between gE and the WRC in human cell lines though the WIRS-independent interaction observed in situ warrants further study. Confocal microscopy of infected cells of neuronal origin identified no impairment of gE WIRS-mutant HSV-1 anterograde transport along axons. We propose that the identified gE WIRS motif does not function directly in recruitment of the WRC in human cells, in cell-to-cell spread of virus or in anterograde transport along axons. Further studies are needed to understand how HSV-1 manipulates and traverses the actin cytoskeleton and how gE may contribute to these processes in a WIRS-independent manner.


Sign in / Sign up

Export Citation Format

Share Document