cortical interneurons
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 79)

H-INDEX

58
(FIVE YEARS 8)

2021 ◽  
Vol 24 (12) ◽  
pp. 1648-1659
Author(s):  
Anis Contractor ◽  
Iryna M. Ethell ◽  
Carlos Portera-Cailliau

2021 ◽  
Author(s):  
Maria Santos Cruz ◽  
Meng Li

Cortical interneurons are GABAergic inhibitory cells that connect locally in the neocortex and play a  pivotal role in shaping cortical network activities. Dysfunction of these cells is believed to lead to runaway excitation underlying seizure-based diseases, such as epilepsy, autism, and schizophrenia. There is a growing interest in using cortical interneurons derived from human pluripotent stem cells for understanding their complex development and for modeling neuropsychiatric diseases. Here, we report the identification of a novel role of TGFβ signaling in modulating interneuron progenitor maintenance and neuronal differentiation. TGFβ signaling inhibition suppresses terminal differentiation of interneuron progenitors while exogenous TGFβ3 accelerates the transition of progenitors into postmitotic neurons. We provide evidence that TGFb signaling exerts this function via regulating cell cycle length of the NKX2.1+ neural progenitors. Together, this study represents a useful platform for studying human interneuron development and interneuron associated neurological diseases with human pluripotent stem cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yolpanhchana Lim ◽  
Jennifer E. Beane-Ebel ◽  
Yoshiaki Tanaka ◽  
Boting Ning ◽  
Christopher R. Husted ◽  
...  

AbstractTranscriptomic changes in specific brain regions can influence the risk of alcohol use disorder (AUD), but the underlying mechanism is not fully understood. We investigated AUD-associated miRNA–mRNA regulatory networks in multiple brain regions by analyzing transcriptomic changes in two sets of postmortem brain tissue samples and ethanol-exposed human embryonic stem cell (hESC)-derived cortical interneurons. miRNA and mRNA transcriptomes were profiled in 192 tissue samples (Set 1) from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control European Australians. Nineteen differentially expressed miRNAs (fold-change>2.0 & P < 0.05) and 97 differentially expressed mRNAs (fold-change>2.0 & P < 0.001) were identified in one or multiple brain regions of AUD subjects. AUD-associated miRNA–mRNA regulatory networks in each brain region were constructed using differentially expressed and negatively correlated miRNA–mRNA pairs. AUD-relevant pathways (including CREB Signaling, IL-8 Signaling, and Axonal Guidance Signaling) were potentially regulated by AUD-associated brain miRNA–mRNA pairs. Moreover, miRNA and mRNA transcriptomes were mapped in additional 96 tissue samples (Set 2) from six of the above eight brain regions of eight AUD and eight control European Australians. Some of the AUD-associated miRNA–mRNA regulatory networks were confirmed. In addition, miRNA and mRNA transcriptomes were analyzed in hESC-derived cortical interneurons with or without ethanol exposure, and ethanol-influenced miRNA–mRNA regulatory networks were constructed. This study provided evidence that alcohol could induce concerted miRNA and mRNA expression changes in reward-related or alcohol-responsive brain regions. We concluded that altered brain miRNA–mRNA regulatory networks might contribute to AUD development.


2021 ◽  
Vol 22 (17) ◽  
pp. 9297
Author(s):  
Rhîannan H. Williams ◽  
Therese Riedemann

In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.


2021 ◽  
pp. JN-RM-0380-20
Author(s):  
Catherine Fleitas ◽  
Pau Marfull-Oromí ◽  
Disha Chauhan ◽  
Daniel del Toro ◽  
Blanca Peguera ◽  
...  

2021 ◽  
Author(s):  
Fikri Birey ◽  
Min-Yin Li ◽  
Aaron Gordon ◽  
Mayuri Thete ◽  
Alfredo M Valencia ◽  
...  

Defects in interneuron migration during forebrain development can disrupt the assembly of cortical circuits and have been associated with neuropsychiatric disease. The molecular and cellular bases of such deficits have been particularly difficult to study in humans due to limited access to functional forebrain tissue from patients. We previously developed a human forebrain assembloid model of Timothy Syndrome (TS), caused by a gain-of-function mutation in CACNA1C which encodes the L-type calcium channel (LTCC) Cav1.2. By functionally integrating human induced pluripotent stem cell (hiPSC)-derived organoids resembling the dorsal and ventral forebrain from patients and control individuals, we uncovered that migration is disrupted in TS cortical interneurons. Here, we dissect the molecular underpinnings of this phenotype and report that acute pharmacological modulation of Cav1.2 can rescue the saltation length but not the saltation frequency of TS migrating interneurons. Furthermore, we find that the defect in saltation length in TS interneurons is associated with aberrant actomyosin function and is rescued by pharmacological modulation of MLC phosphorylation, whereas the saltation frequency phenotype in TS interneurons is driven by enhanced GABA sensitivity and can be restored by GABA receptor antagonism. Overall, these findings uncover multi-faceted roles of LTCC function in human cortical interneuron migration in the context of disease and suggest new strategies to restore interneuron migration deficits.


2021 ◽  
Author(s):  
Fanny Lepiemme ◽  
Gabriel Mazzucchelli ◽  
Carla Silva ◽  
Laurent Nguyen

The cerebral cortex is built by neural cells that migrate away from their birthplace. In the forebrain, ventrally-derived oligodendrocyte precursor cells (vOPCs) travel tangentially together with cortical interneurons (cINs) to reach the cortex. After birth, vOPCs form transient synapses with cINs before engaging later into myelination. Here we tested whether these populations interact during embryogenesis while migrating. By coupling histological analysis of mouse genetic models with live imaging, we showed that, while responding to the chemokine Cxcl12, vOPCs and cINs occupy mutually-exclusive forebrain territories. Moreover, vOPCs depletion selectively disrupts the migration and distribution of cINs. At the cellular level, we found that by promoting unidirectional contact-repulsion (UCoRe) of cINs, vOPCs steer their migration away from blood vessels and contribute to their allocation to proper migratory streams. UCoRe is thus an efficient strategy to spatially control the competition for a shared chemoattractant, thereby allowing cINs to reach proper cortical territories.


2021 ◽  
Author(s):  
Dmitry Velmeshev ◽  
Manideep Chavali ◽  
Tomasz Jan Nowakowski ◽  
Mohini Bhade ◽  
Simone Mayer ◽  
...  

Cortical interneurons are indispensable for proper function of neocortical circuits. Changes in interneuron development and function are implicated in human disorders, such as autism spectrum disorder and epilepsy. In order to understand human-specific features of cortical development as well as the origins of neurodevelopmental disorders it is crucial to identify the molecular programs underlying human interneuron development and subtype specification. Recent studies have explored gene expression programs underlying mouse interneuron specification and maturation. We applied single-cell RNA sequencing to samples of second trimester human ganglionic eminence and developing cortex to identify molecularly defined subtypes of human interneuron progenitors and immature interneurons. In addition, we integrated this data from the developing human ganglionic eminences and neocortex with single-nucleus RNA-seq of adult cortical interneurons in order to elucidate dynamic molecular changes associated with commitment of progenitors and immature interneurons to mature interneuron subtypes. By comparing our data with published mouse single-cell genomic data, we discover a number of divergent gene expression programs that distinguish human interneuron progenitors from mouse. Moreover, we find that a number of transcription factors expressed during prenatal development become restricted to adult interneuron subtypes in the human but not the mouse, and these adult interneurons express species- and lineage-specific cell adhesion and synaptic genes. Therefore, our study highlights that despite the similarity of main principles of cortical interneuron development and lineage commitment between mouse and human, human interneuron genesis and subtype specification is guided by species-specific gene programs, contributing to human-specific features of cortical inhibitory interneurons.


2021 ◽  
Vol 7 (20) ◽  
pp. eabf5676
Author(s):  
Guofen Ma ◽  
Yanmei Liu ◽  
Lizhao Wang ◽  
Zhongyi Xiao ◽  
Kun Song ◽  
...  

Sensory processing is subjected to modulation by behavioral contexts that are often mediated by long-range inputs to cortical interneurons, but their selectivity to different types of interneurons remains largely unknown. Using rabies-virus tracing and optogenetics-assisted recording, we analyzed the long-range connections to various brain regions along the hierarchy of visual processing, including primary visual cortex, medial association cortices, and frontal cortices. We found that hierarchical corticocortical and thalamocortical connectivity is reflected by the relative weights of inputs to parvalbumin-positive (PV+) and vasoactive intestinal peptide–positive (VIP+) neurons within the conserved local circuit motif, with bottom-up and top-down inputs preferring PV+ and VIP+ neurons, respectively. Our algorithms based on innervation weights for these two types of local interneurons generated testable predictions of the hierarchical position of many brain areas. These results support the notion that preferential long-range inputs to specific local interneurons are essential for the hierarchical information flow in the brain.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Matthieu Genestine ◽  
Daisy Ambriz ◽  
Gregg W Crabtree ◽  
Patrick Dummer ◽  
Anna Molotkova ◽  
...  

Cortical interneurons establish inhibitory microcircuits throughout the neocortex and their dysfunction has been implicated in epilepsy and neuropsychiatric diseases. Developmentally, interneurons migrate from a distal progenitor domain in order to populate the neocortex - a process that occurs at a slower rate in humans than in mice. In this study, we sought to identify factors that regulate the rate of interneuron maturation across the two species. Using embryonic mouse development as a model system, we found that the process of initiating interneuron migration is regulated by blood vessels of the medial ganglionic eminence (MGE), an interneuron progenitor domain. We identified two endothelial cell-derived paracrine factors, SPARC and SerpinE1, that enhance interneuron migration in mouse MGE explants and organotypic cultures. Moreover, pre-treatment of human stem cell-derived interneurons (hSC-interneurons) with SPARC and SerpinE1 prior to transplantation into neonatal mouse cortex enhanced their migration and morphological elaboration in the host cortex. Further, SPARC and SerpinE1-treated hSC-interneurons also exhibited more mature electrophysiological characteristics compared to controls. Overall, our studies suggest a critical role for CNS vasculature in regulating interneuron developmental maturation in both mice and humans.


Sign in / Sign up

Export Citation Format

Share Document