Solving Crystal Structures at Atomic Resolution from HRTEM and Refining using Electron Diffraction Data

2007 ◽  
Vol 13 (S02) ◽  
Author(s):  
S Hovmöller
Author(s):  
Christoph Burmester ◽  
Kenneth C. Holmes ◽  
Rasmus R. Schröder

Electron crystallography of 2D protein crystals can yield models with atomic resolution by taking Fourier amplitudes from electron diffraction and phase information from processed images. Imaging at atomic resolution is more difficult than the recording of corresponding electron diffraction patterns. Therefore attempts have been made to recover phase information from diffraction data from 2-D and 3-D crystals by the method of isomorphous replacement using heavy atom labelled protein crystals. These experiments, however, have so far not produced usable phase information, partly because of the large experimental error in the spot intensities. Here we present electron diffraction data obtained from frozen hydrated 3-D protein crystals with an energy-filter microscope and a specially constructed Image Plate scanner which are of considerably better crystallographic quality (as evidenced in much smaller values for the crystallographic R-factors Rsym and Rmerge) than those reported before. The quality of this data shows that the method of isomorphous replacement could indeed be used for phase determination for diffraction data obtained from 3-D microcrystals by electron diffraction.


1996 ◽  
Vol 29 (13) ◽  
pp. 4626-4635 ◽  
Author(s):  
I. André ◽  
K. Mazeau ◽  
I. Tvaroska ◽  
J.-L. Putaux ◽  
W. T. Winter ◽  
...  

2009 ◽  
Vol 1184 ◽  
Author(s):  
Ute Kolb ◽  
Tatiana Gorelik ◽  
Enrico Mugnaioli

AbstractThree-dimensional electron diffraction data was collected with our recently developed module for automated diffraction tomography and used to solve inorganic as well as organic crystal structures ab initio. The diffraction data, which covers nearly the full relevant reciprocal space, was collected in the standard nano electron diffraction mode as well as in combination with the precession technique and was subsequently processed with a newly developed automated diffraction analysis and processing software package. Non-precessed data turned out to be sufficient for ab initio structure solution by direct methods for simple crystal structures only, while precessed data allowed structure solution and refinement in all of the studied cases.


Sign in / Sign up

Export Citation Format

Share Document