scholarly journals Polynomials for hyperovals of Desarguesian planes

Author(s):  
Christine M. O'keefe ◽  
Tim Penttila

AbstractThis paper studies o-polynomials, that is, polynomials which represent hyperovals in Desarguesian projective planes of even order. We present theoretical restrictions on the form that O-polynomials can have, and we determine the number of o-polynomials corresponding to each of the known classes of hyperovals (other than Cherowitzo's). We use this to give the number of known o-polynomials for the fields of orders 4, 8, 16 and 32. Exploratory computer searches for o-polynomials for fields of small orders greater than 16 are reported.

2012 ◽  
Vol 68 (1-3) ◽  
pp. 49-59
Author(s):  
Anton Betten ◽  
Eun Ju Cheon ◽  
Seon Jeong Kim ◽  
Tatsuya Maruta

2019 ◽  
Vol 19 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Mustafa Gezek ◽  
Vladimir D. Tonchev ◽  
Tim Wagner

Abstract The resolutions and maximal sets of compatible resolutions of all 2-(120,8,1) designs arising from maximal (120,8)-arcs, and the 2-(52,4,1) designs arising from previously known maximal (52,4)-arcs, as well as some newly discovered maximal (52,4)-arcs in the known projective planes of order 16, are computed. It is shown that each 2-(120,8,1) design associated with a maximal (120,8)-arc is embeddable in a unique way in a projective plane of order 16. This result suggests a possible strengthening of the Bose–Shrikhande theorem about the embeddability of the complement of a hyperoval in a projective plane of even order. The computations of the maximal sets of compatible resolutions of the 2-(52,4,1) designs associated with maximal (52,4)-arcs show that five of the known projective planes of order 16 contain maximal arcs whose associated designs are embeddable in two nonisomorphic planes of order 16.


10.37236/9008 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Mustafa Gezek ◽  
Rudi Mathon ◽  
Vladimir D. Tonchev

In this paper we consider binary linear codes spanned by incidence matrices of Steiner 2-designs associated with maximal arcs in projective planes of even order, and their dual codes. Upper and lower bounds on the 2-rank of the incidence matrices are derived. A lower bound on the minimum distance of the dual codes is proved, and it is shown that the bound is achieved if and only if the related maximal arc contains a hyperoval of the plane. The  binary linear codes of length 52 spanned by the incidence matrices of 2-$(52,4,1)$ designs associated with previously known and some newly found maximal arcs of degree 4 in projective planes of order 16 are analyzed and classified up to equivalence. The classification shows that some designs associated with maximal arcs in nonisomorphic planes generate equivalent codes. This phenomenon establishes new links between several of the known planes. A conjecture concerning the codes of maximal arcs in $PG(2,2^m)$ is formulated.


1971 ◽  
Vol 22 (1) ◽  
pp. 556-560 ◽  
Author(s):  
Judita Cofman
Keyword(s):  

1957 ◽  
Vol 9 ◽  
pp. 378-388 ◽  
Author(s):  
D. R. Hughes

In (7), Veblen and Wedclerburn gave an example of a non-Desarguesian projective plane of order 9; we shall show that this plane is self-dual and can be characterized by a collineation group of order 78, somewhat like the planes associated with difference sets. Furthermore, the technique used in (7) will be generalized and we will construct a new non-Desarguesian plane of order p2n for every positive integer n and every odd prime p.


Sign in / Sign up

Export Citation Format

Share Document