scholarly journals THE FATOU COMPLETION OF A FRÉCHET FUNCTION SPACE AND APPLICATIONS

2009 ◽  
Vol 88 (1) ◽  
pp. 49-60 ◽  
Author(s):  
R. DEL CAMPO ◽  
W. J. RICKER

AbstractGiven a metrizable locally convex-solid Riesz space of measurable functions we provide a procedure to construct a minimal Fréchet (function) lattice containing it, called its Fatou completion. As an application, we obtain that the Fatou completion of the space L1(ν) of integrable functions with respect to a Fréchet-space-valued measure ν is the space L1w(ν) of scalarly ν-integrable functions. Further consequences are also given.

1975 ◽  
Vol 27 (5) ◽  
pp. 1110-1113 ◽  
Author(s):  
Paul M. Gauthier ◽  
Lee A. Rubel

Let E be a separable Fréchet space, and let E* be its topological dual space. We recall that a Fréchet space is, by definition, a complete metrizable locally convex topological vector space. A sequence {Ln} of continuous linear functional is said to be interpolating if for every sequence {An} of complex numbers, there exists an ƒ ∈ E such that Ln(ƒ) = An for n = 1, 2, 3, … . In this paper, we give necessary and sufficient conditions that {Ln} be an interpolating sequence. They are different from the conditions in [2] and don't seem to be easily interderivable with them.


1972 ◽  
Vol 6 (2) ◽  
pp. 161-167 ◽  
Author(s):  
R.J. Loy

Let B be a topological algebra with Fréchet space topology, A an algebra with locally convex topology and an algebra of formal power series over A in n commuting indeterminates which carries a Fréchet space topology. In a previous paper the author showed, for the case n = 1, that a homomorphism of B into whose range contains polynomials is necessarily continuous provided the coordinate projections of into A satisfy a certain equicontinuity condition. This result is here extended to the case of general n, and also to weaker topological assumptions.


1974 ◽  
Vol 26 (6) ◽  
pp. 1294-1300 ◽  
Author(s):  
Joel H. Shapiro

It is well-known that every weak basis in a Fréchet space is actually a basis. This result, called the weak basis theorem was first given for Banach spaces in 1932 by Banach [1, p. 238], and extended to Fréchet spaces by Bessaga and Petczynski [3]. McArthur [12] proved an analogue for bases of subspaces in Fréchet spaces, and recently W. J. Stiles [18, Corollary 4.5, p. 413] showed that the theorem fails in the non-locally convex spaces lp (0 < p < 1). The purpose of this paper is to prove the following generalization of Stiles' result.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Nilson C. Bernardes ◽  
Alfredo Peris

We establish a general result on the existence of hypercyclic (resp., transitive, weakly mixing, mixing, frequently hypercyclic) polynomials on locally convex spaces. As a consequence we prove that every (real or complex) infinite-dimensional separable Frèchet space admits mixing (hence hypercyclic) polynomials of arbitrary positive degree. Moreover, every complex infinite-dimensional separable Banach space with an unconditional Schauder decomposition and every complex Frèchet space with an unconditional basis support chaotic and frequently hypercyclic polynomials of arbitrary positive degree. We also study distributional chaos for polynomials and show that every infinite-dimensional separable Banach space supports polynomials of arbitrary positive degree that have a dense distributionally scrambled linear manifold.


2018 ◽  
Vol 13 (01) ◽  
pp. 2050017
Author(s):  
Ersin Kızgut ◽  
Murat Yurdakul

For locally convex spaces [Formula: see text] and [Formula: see text], the continuous linear map [Formula: see text] is called bounded if there is a zero neighborhood [Formula: see text] of [Formula: see text] such that [Formula: see text] is bounded in [Formula: see text]. Our main result is that the existence of an unbounded operator [Formula: see text] between Fréchet spaces [Formula: see text] and [Formula: see text] which factors through a third Fréchet space [Formula: see text] ends up with the fact that the triple [Formula: see text] has an infinite dimensional closed common nuclear Köthe subspace, provided that [Formula: see text] has the property [Formula: see text].


1990 ◽  
Vol 13 (3) ◽  
pp. 607-610
Author(s):  
Jan Kucera

It is proved in [1] & [2] that a set bounded in an inductivelimit E=indlim Enof Fréchet spaces is also bounded in someEniffEis fast complete. In the case of arbitrary locally convex spacesEnevery bounded set in a fast completeindlim Enis quasi-bounded in someEn, though it may not be bounded or even contained in anyEn. Every bounded set is quasi-bounded. In a Fréchet space every quasi-bounded set is also bounded.


1996 ◽  
Vol 120 (3) ◽  
pp. 489-498 ◽  
Author(s):  
A. A. Albanese ◽  
G. Metafune ◽  
V. B. Moscatelli

The present work has its motivation in the papers [2] and [6] on distinguished Fréchet function spaces. Recall that a Fréchet space E is distinguished if it is the projective limit of a sequence of Banach spaces En such that the strong dual E′β is the inductive limit of the sequence of the duals E′n. Clearly, the property of being distinguished is inherited by complemented subspaces and in [6] Taskinen proved that the Fréchet function space C(R) ∩ L1(R) (intersection topology) is not distinguished, by showing that it contains a complemented subspace of Moscatelli type (see Section 1) that is not distinguished. Because of the criterion in [1], it is easy to decide when a Frechet space of Moscatelli type is distinguished. Using this, in [2], Bonet and Taskinen obtained that the spaces open in RN) are distinguished, by proving that they are isomorphic to complemented subspaces of distinguished Fréchet spaces of Moscatelli type.


Sign in / Sign up

Export Citation Format

Share Document