Journal of Function Spaces and Applications
Latest Publications


TOTAL DOCUMENTS

432
(FIVE YEARS 0)

H-INDEX

18
(FIVE YEARS 0)

Published By Hindawi Limited

0972-6802, 2090-8997

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Liu ◽  
Jianfeng Dong

Assume thatGis a stratified Lie group andQis the homogeneous dimension ofG. Let-Δbe the sub-Laplacian onGandW≢0a nonnegative potential belonging to certain reverse Hölder classBsfors≥Q/2. LetL=-Δ+Wbe a Schrödinger operator on the stratified Lie groupG. In this paper, we prove the boundedness of some integral operators related toL, such asL-1∇2,L-1W, andL-1(-Δ) on the spaceBMOL(G).


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Meiqiang Feng

The Rayleigh equation with two deviating argumentsx′′(t)+f(x'(t))+g1(t,x(t-τ1(t)))+g2(t,x(t-τ2(t)))=e(t)is studied. By using Leray-Schauder index theorem and Leray-Schauder fixed point theorem, we obtain some new results on the existence of periodic solutions, especially for the existence of nontrivial periodic solutions to this equation. The results are illustrated with two examples, which cannot be handled using the existing results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Peiluan Li ◽  
Yusen Wu ◽  
Xiaoquan Ding

We solve theoretically the center problem and the cyclicity of the Hopf bifurcation for two families of Kukles-like systems with their origins being nilpotent and monodromic isolated singular points.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jae Gil Choi ◽  
David Skoug ◽  
Seung Jun Chang
Keyword(s):  

We introduce the Fresnel type classℱA1,A2a,b. We also establish the existence of the generalized analytic Fourier-Feynman transform for functionals in the Banach algebraℱA1,A2a,b.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Hussein A. H. Salem ◽  
Mieczysław Cichoń

The object of this paper is to investigate the existence of a class of solutions for some boundary value problems of fractional order with integral boundary conditions. The considered problems are very interesting and important from an application point of view. They include two, three, multipoint, and nonlocal boundary value problems as special cases. We stress on single and multivalued problems for which the nonlinear term is assumed only to be Pettis integrable and depends on the fractional derivative of an unknown function. Some investigations on fractional Pettis integrability for functions and multifunctions are also presented. An example illustrating the main result is given.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Wen-Hui Li ◽  
Miao-Miao Zheng

By finding linear relations among differences between two special means, the authors establish some inequalities for bounding Toader mean in terms of the arithmetic, harmonic, centroidal, and contraharmonic means.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Messaoud Bounkhel

For a set-valued mappingMdefined between two Hausdorff topological vector spacesEandFand with closed convex graph and for a given point(x,y)∈E×F, we study the minimal time function associated with the images ofMand a bounded setΩ⊂Fdefined by𝒯M,Ω(x,y):=inf{t≥0:M(x)∩(y+tΩ)≠∅}. We prove and extend various properties on directional derivatives and subdifferentials of𝒯M,Ωat those points of(x,y)∈E×F(both cases: points in the graphgph Mand points outside the graph). These results are used to prove, in terms of the minimal time function, various new characterizations of the convex tangent cone and the convex normal cone to the graph ofMat points insidegph Mand to the graph of the enlargement set-valued mapping at points outsidegph M. Our results extend many existing results, from Banach spaces and normed vector spaces to Hausdorff topological vector spaces (Bounkhel, 2012; Bounkhel and Thibault, 2002; Burke et al., 1992; He and Ng, 2006; and Jiang and He 2009). An application of the minimal time function𝒯M,Ωto the calmness property of perturbed optimization problems in Hausdorff topological vector spaces is given in the last section of the paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Banyat Sroysang

Sulaiman presented, in 2008, new kinds of Hardy-Hilbert’s integral inequality in which the weight function is homogeneous. In this paper, we present a generalization on the kinds of Hardy-Hilbert’s integral inequality.


Sign in / Sign up

Export Citation Format

Share Document