scholarly journals ON THE EXPONENT OF A VERBAL SUBGROUP IN A FINITE GROUP

2012 ◽  
Vol 93 (3) ◽  
pp. 325-332 ◽  
Author(s):  
PAVEL SHUMYATSKY

AbstractLet $w$ be a multilinear commutator word. We prove that if $e$ is a positive integer and $G$ is a finite group in which any nilpotent subgroup generated by $w$-values has exponent dividing $e$, then the exponent of the corresponding verbal subgroup $w(G)$ is bounded in terms of $e$ and $w$only.

Author(s):  
ELOISA DETOMI ◽  
MARTA MORIGI ◽  
PAVEL SHUMYATSKY

Abstract We show that if w is a multilinear commutator word and G a finite group in which every metanilpotent subgroup generated by w-values is of rank at most r, then the rank of the verbal subgroup $w(G)$ is bounded in terms of r and w only. In the case where G is soluble, we obtain a better result: if G is a finite soluble group in which every nilpotent subgroup generated by w-values is of rank at most r, then the rank of $w(G)$ is at most $r+1$ .


2019 ◽  
Vol 22 (6) ◽  
pp. 1049-1057
Author(s):  
Pavel Shumyatsky ◽  
Danilo Silveira

Abstract Let {m,n} be positive integers and w a multilinear commutator word. Assume that G is a finite group having subgroups {G_{1},\ldots,G_{m}} whose union contains all w-values in G. Assume further that all elements of the subgroups {G_{1},\ldots,G_{m}} are n-Engel in G. It is shown that the verbal subgroup {w(G)} is s-Engel for some {\{m,n,w\}} -bounded number s.


2013 ◽  
Vol 23 (01) ◽  
pp. 81-89 ◽  
Author(s):  
RAIMUNDO BASTOS ◽  
PAVEL SHUMYATSKY ◽  
ANTONIO TORTORA ◽  
MARIA TOTA

Let m, n be positive integers, v a multilinear commutator word and w = vm. We prove that if G is a residually finite group in which all w-values are n-Engel, then the verbal subgroup w(G) is locally nilpotent. We also examine the question whether this is true in the case where G is locally graded rather than residually finite. We answer the question affirmatively in the case where m = 1. Moreover, we show that if u is a non-commutator word and G is a locally graded group in which all u-values are n-Engel, then the verbal subgroup u(G) is locally nilpotent.


2019 ◽  
Vol 100 (2) ◽  
pp. 281-289
Author(s):  
CARMINE MONETTA ◽  
ANTONIO TORTORA

The word $w=[x_{i_{1}},x_{i_{2}},\ldots ,x_{i_{k}}]$ is a simple commutator word if $k\geq 2,i_{1}\neq i_{2}$ and $i_{j}\in \{1,\ldots ,m\}$ for some $m>1$. For a finite group $G$, we prove that if $i_{1}\neq i_{j}$ for every $j\neq 1$, then the verbal subgroup corresponding to $w$ is nilpotent if and only if $|ab|=|a||b|$ for any $w$-values $a,b\in G$ of coprime orders. We also extend the result to a residually finite group $G$, provided that the set of all $w$-values in $G$ is finite.


2019 ◽  
Vol 22 (3) ◽  
pp. 529-544
Author(s):  
Lijian An

Abstract A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms of the lattice. The width of a quasi-antichain is the number of atoms. For a positive integer {w\geq 3} , a quasi-antichain of width w is denoted by {\mathcal{M}_{w}} . In [B. Brewster, P. Hauck and E. Wilcox, Quasi-antichain Chermak–Delgado lattice of finite groups, Arch. Math. 103 2014, 4, 301–311], it is proved that {\mathcal{M}_{w}} can be the Chermak–Delgado lattice of a finite group if and only if {w=1+p^{a}} for some positive integer a and some prime p. Let t be the number of abelian atoms in {\mathcal{CD}(G)} . In this paper, we completely answer the following question: which values of t are possible in quasi-antichain Chermak–Delgado lattices?


2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].


2016 ◽  
Vol 94 (2) ◽  
pp. 273-277
Author(s):  
AGENOR FREITAS DE ANDRADE ◽  
PAVEL SHUMYATSKY

The last term of the lower central series of a finite group $G$ is called the nilpotent residual. It is usually denoted by $\unicode[STIX]{x1D6FE}_{\infty }(G)$. The lower Fitting series of $G$ is defined by $D_{0}(G)=G$ and $D_{i+1}(G)=\unicode[STIX]{x1D6FE}_{\infty }(D_{i}(G))$ for $i=0,1,2,\ldots \,$. These subgroups are generated by so-called coprime commutators $\unicode[STIX]{x1D6FE}_{k}^{\ast }$ and $\unicode[STIX]{x1D6FF}_{k}^{\ast }$ in elements of $G$. More precisely, the set of coprime commutators $\unicode[STIX]{x1D6FE}_{k}^{\ast }$ generates $\unicode[STIX]{x1D6FE}_{\infty }(G)$ whenever $k\geq 2$ while the set $\unicode[STIX]{x1D6FF}_{k}^{\ast }$ generates $D_{k}(G)$ for $k\geq 0$. The main result of this article is the following theorem: let $m$ be a positive integer and $G$ a finite group. Let $X\subset G$ be either the set of all $\unicode[STIX]{x1D6FE}_{k}^{\ast }$-commutators for some fixed $k\geq 2$ or the set of all $\unicode[STIX]{x1D6FF}_{k}^{\ast }$-commutators for some fixed $k\geq 1$. Suppose that the size of $a^{X}$ is at most $m$ for any $a\in G$. Then the order of $\langle X\rangle$ is $(k,m)$-bounded.


2016 ◽  
Vol 26 (05) ◽  
pp. 973-983 ◽  
Author(s):  
E. I. Khukhro ◽  
P. Shumyatsky

Let [Formula: see text] be an element of a group [Formula: see text]. For a positive integer [Formula: see text], let [Formula: see text] be the subgroup generated by all commutators [Formula: see text] over [Formula: see text], where [Formula: see text] is repeated [Formula: see text] times. We prove that if [Formula: see text] is a profinite group such that for every [Formula: see text] there is [Formula: see text] such that [Formula: see text] is finite, then [Formula: see text] has a finite normal subgroup [Formula: see text] such that [Formula: see text] is locally nilpotent. The proof uses the Wilson–Zelmanov theorem saying that Engel profinite groups are locally nilpotent. In the case of a finite group [Formula: see text], we prove that if, for some [Formula: see text], [Formula: see text] for all [Formula: see text], then the order of the nilpotent residual [Formula: see text] is bounded in terms of [Formula: see text].


2006 ◽  
Vol 13 (01) ◽  
pp. 1-8
Author(s):  
Alireza Jamali ◽  
Hamid Mousavi

Let G be a finite group. We let [Formula: see text] and σ (G) denote the number of maximal subgroups of G and the least positive integer n such that G is written as the union of n proper subgroups, respectively. In this paper, we determine the structure of G/ Φ (G) when G is a finite soluble group with [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document