BOUNDING THE ORDER OF THE NILPOTENT RESIDUAL OF A FINITE GROUP

2016 ◽  
Vol 94 (2) ◽  
pp. 273-277
Author(s):  
AGENOR FREITAS DE ANDRADE ◽  
PAVEL SHUMYATSKY

The last term of the lower central series of a finite group $G$ is called the nilpotent residual. It is usually denoted by $\unicode[STIX]{x1D6FE}_{\infty }(G)$. The lower Fitting series of $G$ is defined by $D_{0}(G)=G$ and $D_{i+1}(G)=\unicode[STIX]{x1D6FE}_{\infty }(D_{i}(G))$ for $i=0,1,2,\ldots \,$. These subgroups are generated by so-called coprime commutators $\unicode[STIX]{x1D6FE}_{k}^{\ast }$ and $\unicode[STIX]{x1D6FF}_{k}^{\ast }$ in elements of $G$. More precisely, the set of coprime commutators $\unicode[STIX]{x1D6FE}_{k}^{\ast }$ generates $\unicode[STIX]{x1D6FE}_{\infty }(G)$ whenever $k\geq 2$ while the set $\unicode[STIX]{x1D6FF}_{k}^{\ast }$ generates $D_{k}(G)$ for $k\geq 0$. The main result of this article is the following theorem: let $m$ be a positive integer and $G$ a finite group. Let $X\subset G$ be either the set of all $\unicode[STIX]{x1D6FE}_{k}^{\ast }$-commutators for some fixed $k\geq 2$ or the set of all $\unicode[STIX]{x1D6FF}_{k}^{\ast }$-commutators for some fixed $k\geq 1$. Suppose that the size of $a^{X}$ is at most $m$ for any $a\in G$. Then the order of $\langle X\rangle$ is $(k,m)$-bounded.

1979 ◽  
Vol 85 (2) ◽  
pp. 261-270 ◽  
Author(s):  
Gerald Losey ◽  
Nora Losey

1. LetGbe a group,ZGits integral group ring and Δ = ΔGthe augmentation idealZGBy anaugmentation quotientofGwe mean any one of theZG-moduleswheren, r≥ 1. In recent years there has been a great deal of interest in determining the abelian group structure of the augmentation quotientsQn(G) =Qn,1(G) and(see (1, 2, 7, 8, 9, 12, 13, 14, 15)). Passi(8) has shown that in order to determineQn(G) andPn(G) for finiteGit is sufficient to assume thatGis ap-group. Passi(8, 9) and Singer(13, 14) have obtained information on the structure of these quotients for certain classes of abelianp-groups. However little seems to be known of a quantitative nature for nonabelian groups. In (2) Bachmann and Grünenfelder have proved the following qualitative result: ifGis a finite group then there exist natural numbersn0and π such thatQn(G) ≅Qn+π(G) for alln≥n0; ifGωis the nilpotent residual ofGandG/Gωhas classcthen π divides l.c.m. {1, 2, …,c}. There do not appear to be any examples in the literature of this periodic behaviour forc> 1. One of goals here is to present such examples. These examples will be from the class of finitep-groups in which the lower central series is anNp-series.


2016 ◽  
Vol 26 (05) ◽  
pp. 973-983 ◽  
Author(s):  
E. I. Khukhro ◽  
P. Shumyatsky

Let [Formula: see text] be an element of a group [Formula: see text]. For a positive integer [Formula: see text], let [Formula: see text] be the subgroup generated by all commutators [Formula: see text] over [Formula: see text], where [Formula: see text] is repeated [Formula: see text] times. We prove that if [Formula: see text] is a profinite group such that for every [Formula: see text] there is [Formula: see text] such that [Formula: see text] is finite, then [Formula: see text] has a finite normal subgroup [Formula: see text] such that [Formula: see text] is locally nilpotent. The proof uses the Wilson–Zelmanov theorem saying that Engel profinite groups are locally nilpotent. In the case of a finite group [Formula: see text], we prove that if, for some [Formula: see text], [Formula: see text] for all [Formula: see text], then the order of the nilpotent residual [Formula: see text] is bounded in terms of [Formula: see text].


1965 ◽  
Vol 17 ◽  
pp. 405-410 ◽  
Author(s):  
P. X. Gallagher

Let G be a finite group with commutator subgroup G′. In an earlier paper (4) it was shown that each element of G′ is a product of n commutators, if 4n ≥ |G′|. The object of this paper is to improve this result in two directions:Theorem 1a. If (n + 2)!n! > 2|G′| — 2, then each element of G′ is a product of n commutators.Theorem 1b. If G is a p-group, with |G′| = pa, and if n(n + 1) > a, then each element of G′ is a product of n commutators.


1962 ◽  
Vol 13 (2) ◽  
pp. 175-178 ◽  
Author(s):  
I. D. Macdonald

Letandbe, respectively, the upper and lower central series of a group G. Our purpose in this note is to extend known results and find some information as to which of the factors Zk/Zk−1 and Γk/Γk+1 may be infinite. Though our conclusions about the lower central series will be quite general we assume in the other case that the group is f.n., i.e. an extension of a finite group by a nilpotent group. The essential facts about f.n. groups are to be found in P. Hall's paper (4). We also refer to (4) for general notation; we reserve the letter k for positive integers.


Author(s):  
Eloisa Detomi ◽  
Pavel Shumyatsky

Let $K$ be a subgroup of a finite group $G$ . The probability that an element of $G$ commutes with an element of $K$ is denoted by $Pr(K,G)$ . Assume that $Pr(K,G)\geq \epsilon$ for some fixed $\epsilon >0$ . We show that there is a normal subgroup $T\leq G$ and a subgroup $B\leq K$ such that the indices $[G:T]$ and $[K:B]$ and the order of the commutator subgroup $[T,B]$ are $\epsilon$ -bounded. This extends the well-known theorem, due to P. M. Neumann, that covers the case where $K=G$ . We deduce a number of corollaries of this result. A typical application is that if $K$ is the generalized Fitting subgroup $F^{*}(G)$ then $G$ has a class-2-nilpotent normal subgroup $R$ such that both the index $[G:R]$ and the order of the commutator subgroup $[R,R]$ are $\epsilon$ -bounded. In the same spirit we consider the cases where $K$ is a term of the lower central series of $G$ , or a Sylow subgroup, etc.


2018 ◽  
Vol 21 (4) ◽  
pp. 713-718 ◽  
Author(s):  
Raimundo Bastos ◽  
Carmine Monetta ◽  
Pavel Shumyatsky

AbstractWe prove that the kth term of the lower central series of a finite group G is nilpotent if and only if {|ab|=|a||b|} for any {\gamma_{k}}-commutators {a,b\in G} of coprime orders.


2019 ◽  
Vol 22 (2) ◽  
pp. 297-312 ◽  
Author(s):  
Victor S. Monakhov ◽  
Alexander A. Trofimuk

AbstractLetGbe a finite group. In this paper we obtain some sufficient conditions for the supersolubility ofGwith two supersoluble non-conjugate subgroupsHandKof prime index, not necessarily distinct. It is established that the supersoluble residual of such a group coincides with the nilpotent residual of the derived subgroup. We prove thatGis supersoluble in the following cases: one of the subgroupsHorKis nilpotent; the derived subgroup{G^{\prime}}ofGis nilpotent;{|G:H|=q>r=|G:K|}andHis normal inG. Also the supersolubility ofGwith two non-conjugate maximal subgroupsMandVis obtained in the following cases: all Sylow subgroups ofMand ofVare seminormal inG; all maximal subgroups ofMand ofVare seminormal inG.


2019 ◽  
Vol 22 (3) ◽  
pp. 529-544
Author(s):  
Lijian An

Abstract A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms of the lattice. The width of a quasi-antichain is the number of atoms. For a positive integer {w\geq 3} , a quasi-antichain of width w is denoted by {\mathcal{M}_{w}} . In [B. Brewster, P. Hauck and E. Wilcox, Quasi-antichain Chermak–Delgado lattice of finite groups, Arch. Math. 103 2014, 4, 301–311], it is proved that {\mathcal{M}_{w}} can be the Chermak–Delgado lattice of a finite group if and only if {w=1+p^{a}} for some positive integer a and some prime p. Let t be the number of abelian atoms in {\mathcal{CD}(G)} . In this paper, we completely answer the following question: which values of t are possible in quasi-antichain Chermak–Delgado lattices?


2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].


2006 ◽  
Vol 13 (01) ◽  
pp. 1-8
Author(s):  
Alireza Jamali ◽  
Hamid Mousavi

Let G be a finite group. We let [Formula: see text] and σ (G) denote the number of maximal subgroups of G and the least positive integer n such that G is written as the union of n proper subgroups, respectively. In this paper, we determine the structure of G/ Φ (G) when G is a finite soluble group with [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document