Electronic Coherences Steer the Strong Isotope Effect in the Ultrafast Jahn–Teller Structural Rearrangement of Methane Cation upon Tunnel Ionization

Author(s):  
Martin Blavier ◽  
Ksenia Komarova ◽  
Cayo E. M. Gonçalves ◽  
R. D. Levine ◽  
F. Remacle
2021 ◽  
Author(s):  
Cayo Gonçalves ◽  
Raphael D. Levine ◽  
Francoise Remacle

<p>An ultrafast structural, Jahn-Teller (JT) driven, electronic coherence mediated quantum dynamics in the CH<sub>4</sub><sup>+</sup> and CD<sub>4</sub><sup>+ </sup>cations that follows a sudden ionization by an XUV attopulse, exhibits a strong isotope effect. The JT effect makes the methane cation unstable in the T<sub>d</sub> geometry of the neutral. Upon the sudden ionization the cation is produced in a coherent superposition of three electronic states that are strongly coupled. On the ground state of the cation the few femtosecond structural rearrangement leads first to a geometrically less distorted D<sub>2d</sub> minimum followed by a reorganization to a shallow C<sub>2v</sub> minimum. The dynamics is computed for an ensemble of 8000 ions randomly oriented with respect to the polarization of the XUV pulse. The ratio, about 3, of the CD<sub>4</sub><sup>+</sup> and CH<sub>4</sub><sup>+</sup><sub> </sub>autocorrelation functions, is in agreement with experimental measurements of the high harmonic spectra. The high value of the ratio is attributed to the faster electronic coherence dynamics in CH<sub>4</sub><sup>+</sup>. </p>


2021 ◽  
Author(s):  
Cayo Gonçalves ◽  
Raphael D. Levine ◽  
Francoise Remacle

<p>An ultrafast structural, Jahn-Teller (JT) driven, electronic coherence mediated quantum dynamics in the CH<sub>4</sub><sup>+</sup> and CD<sub>4</sub><sup>+ </sup>cations that follows a sudden ionization by an XUV attopulse, exhibits a strong isotope effect. The JT effect makes the methane cation unstable in the T<sub>d</sub> geometry of the neutral. Upon the sudden ionization the cation is produced in a coherent superposition of three electronic states that are strongly coupled. On the ground state of the cation the few femtosecond structural rearrangement leads first to a geometrically less distorted D<sub>2d</sub> minimum followed by a reorganization to a shallow C<sub>2v</sub> minimum. The dynamics is computed for an ensemble of 8000 ions randomly oriented with respect to the polarization of the XUV pulse. The ratio, about 3, of the CD<sub>4</sub><sup>+</sup> and CH<sub>4</sub><sup>+</sup><sub> </sub>autocorrelation functions, is in agreement with experimental measurements of the high harmonic spectra. The high value of the ratio is attributed to the faster electronic coherence dynamics in CH<sub>4</sub><sup>+</sup>. </p>


1989 ◽  
Vol 93 (18) ◽  
pp. 6642-6645 ◽  
Author(s):  
K. Matsuura ◽  
K. Nunome ◽  
M. Okazaki ◽  
K. Toriyama ◽  
M. Iwasaki

1997 ◽  
Vol 282-287 ◽  
pp. 1813-1814
Author(s):  
A.S. Moskvin ◽  
A.S. Ovchinnikov ◽  
Yu.D. Panov ◽  
M.A. Sidorov

Author(s):  
Cayo C. M. Goncalves ◽  
Raphael D. Levine ◽  
Francoise Remacle

An ultrafast structural, Jahn-Teller (JT) driven, electronic coherence mediated quantum dynamics in the CH4+ and CD4+ cations that follows a sudden ionization by an XUV attopulse, exhibits a strong isotope...


1998 ◽  
Vol 93 (5) ◽  
pp. 801-807
Author(s):  
JOACHIM SCHULTE ◽  
MICHAEL BOHM ◽  
RAFAEL RAMIREZ

Sign in / Sign up

Export Citation Format

Share Document