NMR Studies of the Binding of an SPXX-Containing Peptide from High-Molecular-Weight Basic Nuclear Proteins to an A-T Rich DNA Hairpin

Author(s):  
Ning Zhou ◽  
Hans J. Vogel
2012 ◽  
Vol 48 (10) ◽  
pp. 1434-1436 ◽  
Author(s):  
Isabel Ayala ◽  
Olivier Hamelin ◽  
Carlos Amero ◽  
Ombeline Pessey ◽  
Michael J. Plevin ◽  
...  

2020 ◽  
Vol 117 (23) ◽  
pp. 12836-12846 ◽  
Author(s):  
Gili Abramov ◽  
Algirdas Velyvis ◽  
Enrico Rennella ◽  
Leo E. Wong ◽  
Lewis E. Kay

The development of methyl-transverse relaxation-optimized spectroscopy (methyl-TROSY)–based NMR methods, in concert with robust strategies for incorporation of methyl-group probes of structure and dynamics into the protein of interest, has facilitated quantitative studies of high-molecular-weight protein complexes. Here we develop a one-pot in vitro reaction for producing NMR quantities of methyl-labeled DNA at the C5 and N6 positions of cytosine (5mC) and adenine (6mA) nucleobases, respectively, enabling the study of high-molecular-weight DNA molecules using TROSY approaches originally developed for protein applications. Our biosynthetic strategy exploits the large number of naturally available methyltransferases to specifically methylate DNA at a desired number of sites that serve as probes of structure and dynamics. We illustrate the methodology with studies of the 153-base pair Widom DNA molecule that is simultaneously methyl-labeled at five sites, showing that high-quality13C-1H spectra can be recorded on 100 μM samples in a few minutes. NMR spin relaxation studies of labeled methyl groups in both DNA and the H2B histone protein component of the 200-kDa nucleosome core particle (NCP) establish that methyl groups at 5mC and 6mA positions are, in general, more rigid than Ile, Leu, and Val methyl probes in protein side chains. Studies focusing on histone H2B of NCPs wrapped with either wild-type DNA or DNA methylated at all 26 CpG sites highlight the utility of NMR in investigating the structural dynamics of the NCP and how its histone core is affected through DNA methylation, an important regulator of transcription.


1987 ◽  
Vol 65 (10) ◽  
pp. 909-916 ◽  
Author(s):  
David C. R. Young ◽  
Peter L. Davies

In maturing sperm of the winter flounder, histones are not replaced by protamines but instead joined by a group of high molecular weight basic nuclear proteins. Despite their large size and number of components, these proteins were reduced to a relatively simple set of peptides by a "limit" digestion with endoprotease Lys-C. Nine of these peptides, that together account for half of the mass of the digest, were purified by two rounds of chromatography on a C18 reverse-phase high pressure liquid chromatographic column and analysed by sequential Edman degradation. Their sequences can be divided into two homology groups. Seven of the peptides contain all or part of a dodecapeptide consensus sequence, NH2-Ser-Pro-Met-Arg-Ser-Arg-Ser-Pro-Ser-Arg-Ser-Lys-COOH, which appears to be tandemly repeated. This dodecapeptide contains a previously recognized consensus phosphorylation sequence, NH2-Arg-Ser-Arg-Ser-Pro-COOH, in which both serines are phosphorylated during the early stages of spermiogenesis. The other homology group has the sequence NH2-Arg-Arg-Val-X-X-Pro-Lys-COOH, where X-X is either Gln-Thr or Pro-Ser. The dodecapeptide and heptapeptide sequences form at least 35 and 11%, respectively, of the high molecular weight basic nuclear proteins and are, therefore, repeated many times over in these proteins. A search for identical or homologous sequences within the Protein Sequence Database indicated that they are unique. The closest matches were to protamines and some viral DNA-binding proteins.


Sign in / Sign up

Export Citation Format

Share Document