Molecular Weight
Recently Published Documents


(FIVE YEARS 13975)



2022 ◽  
Vol 88 ◽  
pp. 104874
Xincheng Sun ◽  
Chengxin Zhao ◽  
Xuyang Hu ◽  
Jingnan Zhang ◽  
Suyue Xu ◽  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4222
Takumitsu Kida ◽  
Takeyoshi Kimura ◽  
Ayaka Eno ◽  
Khunanya Janchai ◽  
Masayuki Yamaguchi ◽  

The effects of the ultra-high-molecular-weight (UHMW) component of polypropylene (PP) on its rheological properties, crystallization behavior, and solid-state mechanical properties were investigated using various measurement techniques. The terminal relaxation time—determined by measuring the linear viscoelasticity—was increased by adding the UHMW component. The increase in the melt elasticity produced by adding the UHMW component was observed by measuring the steady-state shear flow, although the shear viscosity was not greatly affected. Owing to the long characteristic time of the Rouse relaxation of the UHMW component, PP with the UHMW component formed highly oriented structures through a shear-induced crystallization process. The addition of the UHMW component enhanced the orientation and regularity of crystalline structure for extruded films. Therefore, the Young’s modulus, yield stress, and strength were higher in the PP film containing the UHMW component than in one without the UHMW component, irrespective of the direction of tensile deformation.

2021 ◽  
Celia Fernandez Sanz ◽  
Sergio De la Fuente Perez ◽  
Zuzana Nichtova ◽  
Yuexing Yuan ◽  
Sebastian Lanvermann ◽  

Rationale: Mitochondrial fission and fusion are relatively infrequent in adult cardiomyocytes compared to other cell types. This is surprising considering that proteins involved in mitochondrial dynamics are highly expressed in the heart. It has been previously reported that dynamin related protein 1 (DRP1) has a critical role in mitochondrial fitness and cardiac protection. Cardiac DRP1 ablation in the adult heart evokes a progressive dilated cardiac myopathy and lethal heart failure. Nevertheless, the conditional cardiacspecific DRP1 knock out animals present a significantly longer survival rate compared with global DRP1 KO models. We have described before the great importance for cardiac physiology of the strategic positioning of mitochondrial proteins in the cardiac tissue. Therefore, we hypothesize that DRP1 plays a regulatory role in cardiac physiology and mitochondrial fitness by preferentially accumulating at mitochondria and junctional sarcoplasmic reticulum (jSR) contact sites, where the high Ca2+ microdomain is formed during excitation-contraction (EC) coupling. Objective: This study aims to determine whether mitochondria-associated DRP1 is preferentially accumulated in the mitochondria and jSR contact sites and if indeed this is the case, what is the mechanism responsible for such a biased distribution and what is the functional implication. Methods and Results: Using high-resolution imaging approaches, we found that mitochondria-associated DRP1 in cardiomyocytes was localized in the discrete regions where T-tubule, jSR, and mitochondria are adjacent to each other. Western blot results showed that mitochondria-bound DRP1 was restricted to the mitochondria-associated membranes (MAM), with undetectable levels in purified mitochondria. Furthermore, in comparison to the cytosolic DRP1, the membrane-bound DRP1 in SR and MAM fractions formed high molecular weight oligomers. In both electrically paced adult cardiomyocytes and Langendorff-perfused beating hearts, the oscillatory Ca2+ pulses preserved MAM-associated DRP1 accumulation. Interestingly, similar to DRP1, all mitochondria-bound βACTIN only exists in MAM and not in the purified mitochondria. Additionally, co-immunoprecipitation pulls down both DRP1 and βACTIN together. Inhibition of βACTIN polymerization with Cytochalasin D disrupts the tight association between DRP1 and βACTIN. In cardiac specific DRP1 knockout mouse after 6 weeks of tamoxifen induction the cardiomyocytes show disarray of sarcomere, a decrease of cardiac contraction, loss of mitochondrial membrane potential significantly decreased spare respiratory capacity, and frequent occurrence of earl after contraction, suggesting the heart is susceptible for failure and arrhythmias. Despite of this phenotype, DRP1icKo animal have a longer life spam than other DRP1 KO models. We also observed that DRP1icKO. Strikingly, DRP1 levels are is only modestly decreased in the MAM when compared with the rest of the cellular fractions. These preserved levels were accompanied with preservation of the mitochondrial pool in the MAM fraction obtained from the DRP1icKO hearts. Conclusions: The results show that in adult cardiomyocytes, mitochondria bound DRP1 clusters in high molecular weight protein complexes at MAM. This clustering is fortified by EC coupling mediated Ca2+ transients and requires its interaction with βACTIN. Together with the better preserved dRP1 levels in the DRP1icKO model in the MAM, we conclude that DRP1 is anchored in mitochondria-SR interface through βACTIN and position itself to play a fundamental role in regulating mitochondrial quality control in the working heart.

2021 ◽  
Vol 2021 (12) ◽  
pp. pdb.prot102228
Clara L. Kielkopf ◽  
William Bauer ◽  
Ina L. Urbatsch

Most analytical electrophoreses of proteins are achieved by separation in polyacrylamide gels under conditions that ensure dissociation of proteins into individual polypeptide subunits and minimize aggregation. Most commonly, the anionic detergent sodium dodecyl sulfate (SDS) is used in combination with a reducing agent (β-mercaptoethanol or dithiothreitol) and with heating to dissociate proteins before loading onto the gel. SDS binding denatures the polypeptides and imparts a negative charge that masks their intrinsic charge. The amount of SDS bound is generally sequence-independent and proportional to molecular weight; at saturation, approximately one SDS molecule is bound per two amino acids, or ∼1.4 g of SDS per gram of polypeptide. Therefore, the migration of SDS–polypeptide complexes in an electric field is proportional to the relative size of the polypeptide chain, and its molecular weight can be estimated by comparison to protein markers of known molecular weight. However, hydrophobicity, highly charged sequences, and certain posttranslational modifications such as glycosylation or phosphorylation may also influence migration. Thus, the apparent molecular weight of modified proteins does not always accurately reflect the mass of the polypeptide chain. This protocol describes preparation and running of SDS-PAGE gels, followed by staining to detect proteins using Coomassie Brilliant Blue. Finally, the stained SDS-PAGE gel may be scanned to an image or preserved by drying.

2021 ◽  
Shuaifeng Zhang ◽  
Jun Gu ◽  
Baochao Fan ◽  
Li Li ◽  
Bin Li

Abstract We report a new method for treating high-molecular-weight cellulose with 60Co gamma rays to simultaneously graft functional groups onto the natural polymer and promote its solubility. After exposing cellulose to a 40-kilogray dose of gamma rays in the presence of 2-methylacrylamide, numerous amide groups were grafted onto the cellulose chain and its solubility increased markedly. Amide-functionalized aerogels were prepared via the sol-gel method using the irradiated product as a raw material. Compared with 40-kGy-irradiated cellulose aerogel, the amide-functionalized aerogels had relatively high zero-point charge pH values and excellent adsorption capacities with regard to anionic dyes over the pH range 2-10. They were also stable in terms of reusability. Therefore, the 2-methylacrylamide/high-molecular-weight cellulose aerogel has great potential for use in the treatment of colored surface wastewater. The 60Co gamma ray irradiation technique described herein is a flexible, stable and highly efficient method for the preparation of functionalized cellulose products.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Wenyang Ge ◽  
Yu Gao ◽  
Shoushen Xu ◽  
Xin Ma ◽  
Hongwei Wang ◽  

Abstract Background Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species. Results In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes were identified in the Th. elongatum genome. Micro-synteny and phylogenetic analysis revealed dynamic changes of prolamin gene regions and genetic affinities among Th. elongatum, Triticum aestivum, T. urartu and Aegilops tauschii. The Th. elongatum genome, like the B subgenome of T. aestivum, only contained celiac disease epitope DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the low gluten toxicity wheat breeding. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) line 1E(1D) showed higher peak height values than that of their parents, and DS6E(6D) exhibited fewer α-gliadins, which indicates the potential usage for wheat quality breeding. Conclusions Overall, this study provided a comprehensive overview of the prolamin gene family in Th. elongatum, and suggested a promising use of this species in the generation of improved wheat breeds intended for the human diet.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7263
Michel Bonnard ◽  
Bruno Boury ◽  
Isabelle Parrot

Ommochromes are one of the least studied groups of natural pigments, frequently confused with melanin and, so far, exclusively found in invertebrates such as cephalopods and butterflies. In this study focused on the purple color of the shells of a mollusk, Crassostrea gigas, the first evidence of a metabolite of ommochromes, xanthurenic acid (XA), was obtained by liquid chromatography combined with mass spectrometry (UPLC-MS). In addition to XA and various porphyrins previously identified, a second group of high molecular weight acid-soluble pigments (HMASP) has been identified with physicochemical and structural characteristics similar to those of ommochromes. In addition, fragmentation of HMASP by tandem mass spectrometry (MS/MS) has revealed a substructure common to XA and ommochromes of the ommatin type. Furthermore, the presence of melanins was excluded by the absence of characteristic by-products among the oxidation residues of HMASP. Altogether, these results show that the purple color of the shells of Crassostrea gigas is a complex association of porphyrins and ommochromes of potentially ommatin or ommin type.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Dawei Wu ◽  
Yanrong Zhang ◽  
Dawei Wang ◽  
Tingting Liu ◽  
Shanshan Zhang ◽  

In this study, hot water was used to extract Inonotus obliquus oligosaccharide. DEAE-cellulose and Sepharose G-200 were used to purify Inonotus obliquus oligosaccharide. Inonotus obliquus oligosaccharide IOP-2A was obtained. Its molecular weight Mw is about 1000 Da. The monosaccharide composition and molar ratio were glucose : xylose : galactose : mannose = 54.1 : 13.6 : 13.2 : 6.7. In addition, it also contains a small amount of galactose, gluconic acid, rhamnose, and fucose. IOP-2A contained mainly β-glycosidic bonds. Among them, 1,4-glycosidic bonds accounted for 9.2%, and 1,6-glycosidic bonds accounted for 85.1%. Oligosaccharide macromolecules formed a layered structure. Mouse experiments showed that IOP-2A had the function of preventing hyperlipidemia. At the same time, IOP-2A had a certain protective effect on the liver and kidney. The mechanism of IOP-2A in preventing hyperlipidemia was obtained from the perspective of mouse intestinal flora.

Sign in / Sign up

Export Citation Format

Share Document