Articular Cartilage Proteoglycans As Boundary Lubricants: Structure and Frictional Interaction of Surface-Attached Hyaluronan and Hyaluronan–Aggrecan Complexes

2011 ◽  
Vol 12 (10) ◽  
pp. 3432-3443 ◽  
Author(s):  
Jasmine Seror ◽  
Yulia Merkher ◽  
Nir Kampf ◽  
Lisa Collinson ◽  
Anthony J. Day ◽  
...  

1978 ◽  
Vol 176 (3) ◽  
pp. 683-693 ◽  
Author(s):  
M T Bayliss ◽  
S Y Ali

1. Analysis of the purified proteoglycans extracted from normal human articular cartilage with 4M-guanidinium chloride showed that there was an age-related increase in their content of protein and keratan sulphate. 2. The hydrodynamic size of the dissociated proteoglycans also decreased with advancing age, but there was little change in the proportion that could aggregate. 3. Results suggested that some extracts of aged-human cartilage had an increased content of hyaluronic acid compared with specimens from younger patients. 4. Dissociated proteoglycans, from cartilage of all age groups, bind to hyaluronic acid and form aggregates in direct proportion to the hyaluronic acid concentration. 5. Electrophoretic heterogeneity of the dissociated proteoglycans was demonstrated on polyacrylamide/agarose gels. The number of proteoglycan species observed was also dependent on the age of the patient.



2016 ◽  
Vol 35 (3) ◽  
pp. 548-557 ◽  
Author(s):  
Kirk J. Samaroo ◽  
Mingchee Tan ◽  
David Putnam ◽  
Lawrence J. Bonassar


1984 ◽  
Vol 80 (6) ◽  
pp. 569-573 ◽  
Author(s):  
J. Kiviranta ◽  
M. Tammi ◽  
J. Jurvelin ◽  
A. -M. Säämänen ◽  
H. J. Helminen


1981 ◽  
Vol 199 (1) ◽  
pp. 81-87 ◽  
Author(s):  
J Wieslander ◽  
D Heinegård

Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.



Author(s):  
Sevan R. Oungoulian ◽  
Silvia S. Chen ◽  
Andrew Davol ◽  
Robert L. Sah ◽  
Stephen M. Klisch

Proteoglycans (PGs), a constituent of cartilaginous tissues, have a negative fixed charge (FC) that causes an intratissue swelling stress [1]. This swelling stress is thought to balance tensile stress in the collagen network and contribute to the aggregate modulus of articular cartilage (AC) [1]. Stress constitutive equations that accurately characterize mechanical behavior of individual tissue constituents are crucial for the development of accurate total tissue models. The goal of this study is to extend the range of an existing two compartmental model for PG swelling stress by Basser et al. [1], and develop a continuum level equation for PG Cauchy stress. Specifically, the first aim is to increase the accuracy of the two compartmental model proposed in [1], to a lower range of FC density (FCD) typically found in bovine calf AC. The second aim is to use the extended model to develop a continuum level strain energy function and associated isotropic PG Cauchy stress constitutive equation.





1982 ◽  
Vol &NA; (165) ◽  
pp. 283???289 ◽  
Author(s):  
IAN L. JONES ◽  
AGNETA KL??MFELDT ◽  
TORSTEN SANDSTR??M


Sign in / Sign up

Export Citation Format

Share Document