Automated System for Monitoring and Controlling the Slag Regime in Blast-Furnace Smelting

Metallurgist ◽  
2004 ◽  
Vol 48 (3/4) ◽  
pp. 147-152
Author(s):  
D. N. Togobitskaya ◽  
P. I. Otorvin ◽  
A. I. Bel'kova ◽  
A. Yu. Grin'ko
Author(s):  
Daria Tohobytska ◽  
Alla Bielkova ◽  
Dmytro Stepanenko ◽  
Yurii Likhachov ◽  
Oleksandr Skachko

The functional capabilities, methodological foundations and information software of a modernized computer system for controlling the slag regime of blast furnace smelting, developed at the Institute of Ferrous Metallurgy on the basis of fundamental principles in the physicochemical and mathematical modeling of metallurgical melts and systems based on the concept of directional chemical bonding, are considered. The system provides a predictive calculation of the complex of technological properties of the final blast furnace slag: viscosity, melting points, enthalpy, and desorption capacity. Operational assessment of the slag regime using the Slag system as part of the process control system allows efficiently and up-to-date solving the problems of optimizing the slag regime and pig iron quality under unstable blast furnace conditions


1900 ◽  
Vol 50 (1296supp) ◽  
pp. 20771-20772
Author(s):  
C. C. Longridge

2007 ◽  
Vol 37 (10) ◽  
pp. 898-899 ◽  
Author(s):  
L. D. Nikitin ◽  
V. A. Dolinskii ◽  
S. A. Kudashkina ◽  
L. V. Portnov ◽  
S. F. Bugaev

2021 ◽  
pp. 4-10
Author(s):  
R. R. Dema ◽  
◽  
A. N. Shapovalov ◽  
S. N. Baskov ◽  
◽  
...  

The results of the analysis of production data on the operation of blast furnace No. 1 (useful volume 1007 m3) of Ural Steel JSC for the period from 2013 to 2018 are presented. During this period, pellets from the Mikhailovsky GOK were used with varying degrees of fluxing: pellets of natural basicity in the ratio of CaO/SiO2 equal to 0.08 ± 0.02 units. (2013-2015) and partially fluxed pellets with a basicity of 0.52 ± 0.05 units. (from 2016 to the present). It has been established that the effectiveness of the use of pellets of various basicities is determined by their behavior in the blast furnace and depends on the proportion of pellets in the iron ore part of the charge. The gas-dynamic conditions of the smelting worsen with an increase in the proportion of pellets in the charge, which is accompanied by an increase in the specific pressure drop and forces the flow rate to be adjusted. There is an optimal level of specific pressure drop (53–55 Pa per 1 m3 of blast per minute) for the operating conditions of blast furnace No. 1 of Ural Steel, which ensures the optimum combination of the melting characteristics. Deviation from the optimal level of pressure drop leads to an increase in coke rate and a decrease in the degree of CO use, which is associated with gas distribution disturbance. Due to the increase in high-temperature properties, the replacement of non-fluxed pellets with off-fluxed pellets improves the gas-dynamic conditions in the lower part of the mine (in the cohesive zone). This leads to a decrease in the total pressure drop and specific pressure drop at a constant flow rate of the blast, and is a reserve for melting intensification. To minimize coke rate and maintain the high-performance operation of blast furnaces of Ural Steel JSC, it is necessary to work on 40–45 % of fluxed or 20–25 % acid pellets in a charge. An increase in pellet consumption while maintaining the efficiency of blast-furnace smelting is possible only if their high-temperature properties are improved. The improvement of these properties is possible as a result of optimizing the basicity and increasing the MgO content, which affects the structure and properties of the silicate bond. This work is carried out within a framework of the government order (No. FZRU-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation.


2021 ◽  
Vol 51 (7) ◽  
pp. 461-467
Author(s):  
I. S. Bersenev ◽  
I. S. Vokhmyakova ◽  
A. V. Borodin ◽  
Yu. A. Chesnokov ◽  
S. P. Pigarev ◽  
...  

Metallurgist ◽  
2019 ◽  
Vol 63 (1-2) ◽  
pp. 3-10
Author(s):  
A. V. Kuzin ◽  
N. S. Khlaponin

Metallurgist ◽  
2020 ◽  
Vol 64 (5-6) ◽  
pp. 381-387
Author(s):  
S. V. Filatov ◽  
V. S. Listopadov ◽  
A. Yu. Sorokin ◽  
S. V. Myasoedov ◽  
V. N. Titov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document