scholarly journals Improved Interpretation of Deep Seismic Reflection Data in Areas of Complex Geology Through Integration With Passive Seismic Data Sets

2018 ◽  
Vol 123 (12) ◽  
pp. 10,810-10,830
Author(s):  
Michael Dentith ◽  
Huaiyu Yuan ◽  
Ruth Elaine Murdie ◽  
Perla Pina-Varas ◽  
Simon P. Johnson ◽  
...  
2017 ◽  
Vol 5 (1) ◽  
pp. T23-T31 ◽  
Author(s):  
Ionelia Panea ◽  
Stefan Prisacari ◽  
Victor Mocanu ◽  
Mihnea Micu ◽  
Marius Paraschivoiu

We have performed a deep seismic reflection study, DACIA-PLAN, based on the data recorded along a crooked line across the southeastern Romanian Carpathians. The signal-to-noise ratio (S/N) of these data varies along the seismic profile, and its variation is considered to be an effect of the rough topography, complex subsurface geology, and varying surface conditions encountered during seismic data acquisition. The migrated time section that covers the mountainous area is clear, without visible reflections, making the geologic interpretation very difficult. We used a seismic modeling technique to explain the poor S/N of the recorded data and to generate synthetic seismic sections that can be useful for the geologic interpretation of the field seismic section (migrated time section). We used ray-tracing modeling to obtain the expected seismic expression of horizons of interest. Subsurface illumination modeling indicates that the complex subsurface geology and irregularly deployed sources and receivers are responsible for the incomplete and/or uneven illumination of the subsurface and can lead to strong amplitude variations. We then used 2.5D acoustic finite-difference modeling to analyze the effect of a crooked line on seismic wave propagation. The synthetic shot gathers prove that crooked line arrival times for reflected and head waves contain static time shifts relative to a straight line regular sampling geometry. Some geologic interfaces of interest are not well-imaged on the synthetic seismic section, and this is considered to be an effect of poor positioning during seismic data acquisition. We used the velocity model from the tomographic inversion of first-arrival traveltimes and synthetic and field crooked line deep seismic reflection data to create a structural image for the southeastern Romanian Carpathians and the Focsani Basin, which tie well with the geologic model built for this area on the basis of geologic and well data only.


Geophysics ◽  
1982 ◽  
Vol 47 (10) ◽  
pp. 1355-1374
Author(s):  
James K. Applegate ◽  
David A. Emilia ◽  
Edwin B. Neitzel ◽  
Paul R. Donaldson

A study was undertaken to evaluate the effectiveness of the high‐resolution seismic technique for the mapping of stratigraphic and structural controls in the Gas Hills uranium district, Wyoming. The test area is one in which uranium deposits are in Tertiary sediments which unconformably overlie a Mesozoic Paleozoic section. Paleochannels on the unconformity appear to control the localization of the uranium. Drilling in the area allows an evaluation of the effectiveness of the study. Using both sonic and density logs, we computed synthetic seismograms to evaluate the feasibility of predicting the success of the seismic reflection technique and to test this prediction using surface seismic methods. The field study was undertaken utilizing primarily two energy sources—a high‐frequency vibrator (40–350 Hz), and one‐pound dynamite charges shot in 10-ft holes. A limited amount of data was also acquired using detonating cord on the surface. Some three‐dimensional (3-D) data were also acquired, and a later study acquired passive seismic data. The seismic reflection data were successful not only in delineating the unconformable surface and in mapping paleodrainages on the unconformity, but also in defining channel deposits within the Tertiary section. Correlation with the logs shows the success of the study. Several areas were delineated where one would undertake tight drilling patterns, and other areas were delineated in which one might minimize or eliminate exploratory drilling. The synthetic seismograms also could have predicted the success of the seismic work.


2012 ◽  
Vol 33 (5) ◽  
pp. 869-885 ◽  
Author(s):  
Abdullah Ates ◽  
Funda Bilim ◽  
Aydin Buyuksarac ◽  
Attila Aydemir ◽  
Ozcan Bektas ◽  
...  

2015 ◽  
Vol 06 (08) ◽  
pp. 821-830 ◽  
Author(s):  
Zhanwu Lu ◽  
Rui Gao ◽  
Hongqiang Li ◽  
Wenhui Li ◽  
Xiaosong Xiong

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1395-1407 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

Shallow seismic reflection data were recorded along two long (>1.6 km) intersecting profiles in the glaciated Suhre Valley of northern Switzerland. Appropriate choice of source and receiver parameters resulted in a high‐fold (36–48) data set with common midpoints every 1.25 m. As for many shallow seismic reflection data sets, upper portions of the shot gathers were contaminated with high‐amplitude, source‐generated noise (e.g., direct, refracted, guided, surface, and airwaves). Spectral balancing was effective in significantly increasing the strength of the reflected signals relative to the source‐generated noise, and application of carefully selected top mutes ensured guided phases were not misprocessed and misinterpreted as reflections. Resultant processed sections were characterized by distributions of distinct seismic reflection patterns or facies that were bounded by quasi‐continuous reflection zones. The uppermost reflection zone at 20 to 50 ms (∼15 to ∼40 m depth) originated from a boundary between glaciolacustrine clays/silts and underlying glacial sands/gravels (till) deposits. Of particular importance was the discovery that the deepest part of the valley floor appeared on the seismic section at traveltimes >180 ms (∼200 m), approximately twice as deep as expected. Constrained by information from boreholes adjacent to the profiles, the various seismic units were interpreted in terms of unconsolidated glacial, glaciofluvial, and glaciolacustrine sediments deposited during two principal phases of glaciation (Riss at >100 000 and Würm at ∼18 000 years before present).


2021 ◽  
Author(s):  
Piotr Krzywiec ◽  
Łukasz Słonka ◽  
Quang Nguyen ◽  
Michał Malinowski ◽  
Mateusz Kufrasa ◽  
...  

<p>In 2016, approximately 850 km of high-resolution multichannel seismic reflection data of the BALTEC survey have been acquired offshore Poland within the transition zone between the East European Craton and the Paleozoic Platform. Data processing, focused on removal of multiples, strongly overprinting geological information at shallower intervals, included SRME, TAU-P domain deconvolution, high resolution parabolic Radon demultiple and SWDM (Shallow Water De-Multiple). Entire dataset was Kirchhoff pre-stack time migrated. Additionally, legacy shallow high-resolution multichannel seismic reflection data acquired in this zone in 1997 was also used. All this data provided new information on various aspects of the Phanerozoic evolution of this area, including Late Cretaceous to Cenozoic tectonics and sedimentation. This phase of geological evolution could be until now hardly resolved by analysis of industry seismic data as, due to limited shallow seismic imaging and very strong overprint of multiples, essentially no information could have been retrieved from this data for first 200-300 m. Western part of the BALTEC dataset is located above the offshore segment of the Mid-Polish Swell (MPS) – large anticlinorium formed due to inversion of the axial part of the Polish Basin. BALTEC seismic data proved that Late Cretaceous inversion of the Koszalin – Chojnice fault zone located along the NE border of the MPS was thick-skinned in nature and was associated with substantial syn-inversion sedimentation. Subtle thickness variations and progressive unconformities imaged by BALTEC seismic data within the Upper Cretaceous succession in vicinity of the Kamień-Adler and the Trzebiatów fault zones located within the MPS documented complex interplay of Late Cretaceous basin inversion, erosion and re-deposition. Precambrian basement of the Eastern, cratonic part of the study area is overlain by Cambro-Silurian sedimentary cover. It is dissected by a system of steep, mostly reverse faults rooted in most cases in the deep basement. This fault system has been regarded so far as having been formed mostly in Paleozoic times, due to the Caledonian orogeny. As a consequence, Upper Cretaceous succession, locally present in this area, has been vaguely defined as a post-tectonic cover, locally onlapping uplifted Paleozoic blocks. New seismic data, because of its reliable imaging of the shallowest substratum, confirmed that at least some of these deeply-rooted faults were active as a reverse faults in latest Cretaceous – earliest Paleogene. Consequently, it can be unequivocally proved that large offshore blocks of Silurian and older rocks presently located directly beneath the Cenozoic veneer must have been at least partly covered by the Upper Cretaceous succession; then, they were uplifted during the widespread inversion that affected most of Europe. Ensuing regional erosion might have at least partly provided sediments that formed Upper Cretaceous progradational wedges recently imaged within the onshore Baltic Basin by high-end PolandSPAN regional seismic data. New seismic data imaged also Paleogene and younger post-inversion cover. All these results prove that Late Cretaceous tectonics substantially affected large areas located much farther towards the East than previously assumed.</p><p>This study was funded by the Polish National Science Centre (NCN) grant no UMO-2017/27/B/ST10/02316.</p>


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. A25-A29
Author(s):  
Lele Zhang

Migration of seismic reflection data leads to artifacts due to the presence of internal multiple reflections. Recent developments have shown that these artifacts can be avoided using Marchenko redatuming or Marchenko multiple elimination. These are powerful concepts, but their implementation comes at a considerable computational cost. We have derived a scheme to image the subsurface of the medium with significantly reduced computational cost and artifacts. This scheme is based on the projected Marchenko equations. The measured reflection response is required as input, and a data set with primary reflections and nonphysical primary reflections is created. Original and retrieved data sets are migrated, and the migration images are multiplied with each other, after which the square root is taken to give the artifact-reduced image. We showed the underlying theory and introduced the effectiveness of this scheme with a 2D numerical example.


Sign in / Sign up

Export Citation Format

Share Document