moho depth
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 105)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Author(s):  
B. Tikoff ◽  
C. Siddoway ◽  
D. Sokoutis ◽  
E. Willingshofer

ABSTRACT The Bighorn uplift, Wyoming, developed in the Rocky Mountain foreland during the 75–55 Ma Laramide orogeny. It is one of many crystalline-cored uplifts that resulted from low-amplitude, large-wavelength folding of Phanerozoic strata and the basement nonconformity (Great Unconformity) across Wyoming and eastward into the High Plains region, where arch-like structures exist in the subsurface. Results of broadband and passive-active seismic studies by the Bighorn EarthScope project illuminated the deeper crustal structure. The seismic data show that there is substantial Moho relief beneath the surface exposure of the basement arch, with a greater Moho depth west of the Bighorn uplift and shallower Moho depth east of the uplift. A comparable amount of Moho relief is observed for the Wind River uplift, west of the Bighorn range, from a Consortium for Continental Reflection Profiling (COCORP) profile and teleseismic receiver function analysis of EarthScope Transportable Array seismic data. The amplitude and spacing of crystalline-cored uplifts, together with geological and geophysical data, are here examined within the framework of a lithospheric folding model. Lithospheric folding is the concept of low-amplitude, large-wavelength (150–600 km) folds affecting the entire lithosphere; these folds develop in response to an end load that induces a buckling instability. The buckling instability focuses initial fold development, with faults developing subsequently as shortening progresses. Scaled physical models and numerical models that undergo layer-parallel shortening induced by end loads determine that the wavelength of major uplifts in the upper crust occurs at approximately one third the wavelength of folds in the upper mantle for strong lithospheres. This distinction arises because surface uplifts occur where there is distinct curvature upon the Moho, and the vergence of surface uplifts can be synthetic or antithetic to the Moho curvature. In the case of the Bighorn uplift, the surface uplift is antithetic to the Moho curvature, which is likely a consequence of structural inheritance and the influence of a preexisting Proterozoic suture upon the surface uplift. The lithospheric folding model accommodates most of the geological observations and geophysical data for the Bighorn uplift. An alternative model, involving a crustal detachment at the orogen scale, is inconsistent with the absence of subhorizontal seismic reflectors that would arise from a throughgoing, low-angle detachment fault and other regional constraints. We conclude that the Bighorn uplift—and possibly other Laramide arch-like structures—is best understood as a product of lithospheric folding associated with a horizontal end load imposed upon the continental margin to the west.


2021 ◽  
Author(s):  
wei Wang ◽  
meng Wan ◽  
miaojun Sun ◽  
weijie Jiang ◽  
ping Xu

Abstract The Ross Sea is located between Victoria Land and Mary Bird Land in West Antarctica. In this paper, the published gravity and magnetic data in the Ross Sea area are fused with the high-precision gravity and magnetic data measured by the ship. Then, The gravity anomaly data is used to invert the Moho depth by the Parker-Oldenburg method; the magnetic anomaly data is used to invert the Curie depth of the Ross Sea area by the power spectrum method. Finally, according to the inversion results of the Moho depth and Curie depth, the high-precision heat flow distribution in the Ross Sea area is calculated. And compared with the actual measured heat flow value and other inversion results, it shows that this inversion result has obtained a higher resolution. At the same time, the geothermal gradient is calculated by heat flow and thermal conductivity. According to the temperature-pressure equation for formation and storage of gas hydrate, the thickness of the gas hydrate stability zone in the study area was quantitatively calculated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peter Haas ◽  
Jörg Ebbing ◽  
Nicolas L. Celli ◽  
Patrice F. Rey

The lithospheric build-up of the African continent is still to a large extent unexplored. In this contribution, we present a new Moho depth model to discuss the architecture of the three main African cratonic units, which are: West African Craton, Congo Craton, and Kalahari Craton. Our model is based on a two-step gravity inversion approach that allows variable density contrasts across the Moho depth. In the first step, the density contrasts are varied for all non-cratonic units, in the second step for the three cratons individually. The lateral extension of the tectonic units is defined by a regionalization map, which is calculated from a recent continental seismic tomography model. Our Moho depth is independently constrained by pointwise active seismics and receiver functions. Treating the constraints separately reveals a variable range of density contrasts and different trends in the estimated Moho depth for the three cratons. Some of the estimated density contrasts vary substantially, caused by sparse data coverage of the seismic constraints. With a density contrast of Δ ρ = 200 kg/m3 the Congo Craton features a cool and undisturbed lithosphere with smooth density contrasts across the Moho. The estimated Moho depth shows a bimodal pattern with average Moho depth of 39–40 km for the Kalahari and Congo Cratons and 33–34 km for the West African Craton. We link our estimated Moho depth with the cratonic extensions, imaged by seismic tomography, and with topographic patterns. The results indicate that cratonic lithosphere is not necessarily accompanied by thick crust. For the West African Craton, the estimated thin crust, i.e. shallow Moho, contrasts to thick lithosphere. This discrepancy remains enigmatic and requires further studies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Zhang ◽  
Xiwu Luan

The Okinawa Trough (OT) is an incipient back-arc basin, but its crustal nature is still controversial. Gravity inversion along with sediment and lithospheric mantle density modeling are used to map the regional Moho depth and crustal thickness variations of the OT and its adjacent areas. The gravity inversion result shows that the crustal thicknesses are 17–22 km at the northern OT, 11–19 km at the central OT, and 7–19 km at the southern OT. Because of the crust with a thickness larger than 17 km, the slow southward arc movement, and scarce contemporaneous volcanisms, the northern OT should be in the stage of early back-arc extension. All of the moderate crustal thickness, high heat flow, and intense volcanism at the central OT indicate that this region is probably in the transitional stage from the back-arc rifting to the oceanic spreading. A crust that is only 7 km thick, lithosphere strength as low as the mid-ocean ridge, and MORB-similar basalts at the southern OT demonstrate that the southern OT is at the early stage of seafloor spreading.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2633-2669 ◽  
Author(s):  
Mark R. Handy ◽  
Stefan M. Schmid ◽  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

Abstract. Based on recent results of AlpArray, we propose a new model of Alpine collision that involves subduction and detachment of thick (∼ 180 km) European lithosphere. Our approach combines teleseismic P-wave tomography and existing local earthquake tomography (LET), allowing us to image the Alpine slabs and their connections with the overlying orogenic lithosphere at an unprecedented resolution. The images call into question the conventional notion that downward-moving lithosphere and slabs comprise only seismically fast lithosphere. We propose that the European lithosphere is heterogeneous, locally containing layered positive and negative Vp anomalies of up to 5 %–6 %. We attribute this layered heterogeneity to seismic anisotropy and/or compositional differences inherited from the Variscan and pre-Variscan orogenic cycles rather than to thermal anomalies. The lithosphere–asthenosphere boundary (LAB) of the European Plate therefore lies below the conventionally defined seismological LAB. In contrast, the lithosphere of the Adriatic Plate is thinner and has a lower boundary approximately at the base of strong positive Vp anomalies at 100–120 km. Horizontal and vertical tomographic slices reveal that beneath the central and western Alps, the European slab dips steeply to the south and southeast and is only locally still attached to the Alpine lithosphere. However, in the eastern Alps and Carpathians, this slab is completely detached from the orogenic crust and dips steeply to the north to northeast. This along-strike change in attachment coincides with an abrupt decrease in Moho depth below the Tauern Window, the Moho being underlain by a pronounced negative Vp anomaly that reaches eastward into the Pannonian Basin area. This negative Vp anomaly is interpreted as representing hot upwelling asthenosphere that heated the overlying crust, allowing it to accommodate Neogene orogen-parallel lateral extrusion and thinning of the ALCAPA tectonic unit (upper plate crustal edifice of Alps and Carpathians) to the east. A European origin of the northward-dipping, detached slab segment beneath the eastern Alps is likely since its down-dip length matches estimated Tertiary shortening in the eastern Alps accommodated by originally south-dipping subduction of European lithosphere. A slab anomaly beneath the Dinarides is of Adriatic origin and dips to the northeast. There is no evidence that this slab dips beneath the Alps. The slab anomaly beneath the Northern Apennines, also of Adriatic origin, hangs subvertically and is detached from the Apenninic orogenic crust and foreland. Except for its northernmost segment where it locally overlies the southern end of the European slab of the Alps, this slab is clearly separated from the latter by a broad zone of low Vp velocities located south of the Alpine slab beneath the Po Basin. Considered as a whole, the slabs of the Alpine chain are interpreted as highly attenuated, largely detached sheets of continental margin and Alpine Tethyan oceanic lithosphere that locally reach down to a slab graveyard in the mantle transition zone (MTZ).


2021 ◽  
Author(s):  
Brandon Lutz ◽  
et al.

Description of kinematic reconstruction, reconstructions of the LAB and Moho depth gradients, and three supporting videos of the high-resolution kinematic reconstruction of Lutz (2021).<br>


2021 ◽  
Author(s):  
Brandon Lutz ◽  
et al.

Description of kinematic reconstruction, reconstructions of the LAB and Moho depth gradients, and three supporting videos of the high-resolution kinematic reconstruction of Lutz (2021).<br>


2021 ◽  
Author(s):  
◽  
Anya Mira Seward

<p>A new method of modelling Pn-wave speeds is created. The method allows the predominant wavelength features of P-wave speeds in the uppermost mantle to be modelled, as well as estimating values of mantle anisotropy and irregularities in the crust beneath stations, using least-square collocation. A combination of National Network seismometers, local volcanic seismic monitoring networks and temporary deployments are used to collect arrival times from local events, during the period of 1990-2006. The dataset consists of approximately 11200 Pn observations from 3000 local earthquakes at 91 seismograph sites. The resulting model shows distinct variations in uppermost mantle Pn velocities. Velocities of less than 7.5 km/s are found beneath the back-arc extension region of the Central Volcanic Region, and under the Taranaki Volcanic Region, indicating the presence of water and partial melt. The region to the east shows extremely high velocities of 8.3-8.5 km/s, where the P-waves are traveling within the subducting Pacific slab. Slightly lower than normal mantle velocities of 7.8-8.1 km/s are found in the western North Island, suggesting a soft mantle. Pn anisotropy estimates throughout the North Island show predominately trench parallel fast directions, ceasing to nulls in the west. Anisotropy measurements indicate the strain history of the mantle. For the observed upper mantle Pn velocity of 7.3 km/s is one of the lowest seen in the world. Ray-tracing modelling indicate that this region extends to depths of at least 65 km, suggesting an area of elevated heat (700 - 1100 degrees C) at Moho depth. Elevated temperatures can be caused by the presence partial melt (0.4 % to 2.1 % depending on the amount of water present). Beneath the western North Island, the observed slower than normal mantle velocities, indicate a material of lowered shear modulus, susceptible to strain deformation. However, anisotropy estimations in this region, show no significant anisotropy, suggesting that this is a region of young mantle that hasn't had time to take up the signature of deformation. These observations can be explained by a detachment of the mantle lithosphere through a Rayleigh-Taylor instability more than 5 Ma.</p>


2021 ◽  
Author(s):  
◽  
Anya Mira Seward

<p>A new method of modelling Pn-wave speeds is created. The method allows the predominant wavelength features of P-wave speeds in the uppermost mantle to be modelled, as well as estimating values of mantle anisotropy and irregularities in the crust beneath stations, using least-square collocation. A combination of National Network seismometers, local volcanic seismic monitoring networks and temporary deployments are used to collect arrival times from local events, during the period of 1990-2006. The dataset consists of approximately 11200 Pn observations from 3000 local earthquakes at 91 seismograph sites. The resulting model shows distinct variations in uppermost mantle Pn velocities. Velocities of less than 7.5 km/s are found beneath the back-arc extension region of the Central Volcanic Region, and under the Taranaki Volcanic Region, indicating the presence of water and partial melt. The region to the east shows extremely high velocities of 8.3-8.5 km/s, where the P-waves are traveling within the subducting Pacific slab. Slightly lower than normal mantle velocities of 7.8-8.1 km/s are found in the western North Island, suggesting a soft mantle. Pn anisotropy estimates throughout the North Island show predominately trench parallel fast directions, ceasing to nulls in the west. Anisotropy measurements indicate the strain history of the mantle. For the observed upper mantle Pn velocity of 7.3 km/s is one of the lowest seen in the world. Ray-tracing modelling indicate that this region extends to depths of at least 65 km, suggesting an area of elevated heat (700 - 1100 degrees C) at Moho depth. Elevated temperatures can be caused by the presence partial melt (0.4 % to 2.1 % depending on the amount of water present). Beneath the western North Island, the observed slower than normal mantle velocities, indicate a material of lowered shear modulus, susceptible to strain deformation. However, anisotropy estimations in this region, show no significant anisotropy, suggesting that this is a region of young mantle that hasn't had time to take up the signature of deformation. These observations can be explained by a detachment of the mantle lithosphere through a Rayleigh-Taylor instability more than 5 Ma.</p>


2021 ◽  
Vol 906 (1) ◽  
pp. 012113
Author(s):  
Maria Rosa Duque

Abstract The geothermal heat flow measured at the surface of the Earth is originated by different heat sources located at different depths of the planet. The main sources of heat flow in the crust are associated with radioactive decay of Uranium, Thorium and Potassium, in rocks. In some regions, additional heat sources must be considered such as exothermic chemical reactions. The value of the heat flow coming from deep regions, designated by “heat from the mantle”, must be obtained using indirect methods. In this work, the geoid height was used as indicator of alterations “in heat from the mantle” values, considering that the density decrease in regions with geoid height increase is related to high temperature values in the upper part of the mantle. The region on study is located in the Atlantic Ocean, SW of Cape St. Vincent and Cadiz Gulf. Temperature-depth values were obtained in twelve points of the region considering heat flow by conduction in the vertical direction, using published heat flow and thermal conductivity data. Layered models were made using data obtained in published seismic profiles. Moho depth values were used as lower boundary of the crust and mantle heat flow variations were made according geoid height increases. Ocean depth values between 2.5 and 4.3 km were used. A value of 5°C was used for temperature at the upper boundary (ocean bottom) of the models. Temperature calculus stops when a value of 1350 °C was attained. Lithosphere thickness is obtained considering this temperature value as temperature at the bottom of the lithosphere. Heat flow density values from 36 to 65.8 mW m−2 were used in the work with “heat from the mantle” values from 33 to 35 mw m−2. Curie Point Temperature (600°C) depths from 33 to 36 km were obtained. Lithosphere thickness values about 97 km were obtained in all the models.


Sign in / Sign up

Export Citation Format

Share Document