scholarly journals Cold Plasmaspheric Electrons Affected by ULF Waves in the Inner Magnetosphere: A Van Allen Probes Statistical Study

2019 ◽  
Vol 124 (10) ◽  
pp. 7954-7965 ◽  
Author(s):  
Jie Ren ◽  
Q. G. Zong ◽  
X. Z. Zhou ◽  
H. E. Spence ◽  
H. O. Funsten ◽  
...  
2015 ◽  
Vol 120 (6) ◽  
pp. 4748-4762 ◽  
Author(s):  
Lei Dai ◽  
Kazue Takahashi ◽  
Robert Lysak ◽  
Chi Wang ◽  
John R. Wygant ◽  
...  

2017 ◽  
Vol 122 (8) ◽  
pp. 8327-8339 ◽  
Author(s):  
Xiao-Chen Shen ◽  
Mary K. Hudson ◽  
Allison N. Jaynes ◽  
Quanqi Shi ◽  
Anmin Tian ◽  
...  

2016 ◽  
Vol 43 (18) ◽  
pp. 9444-9452 ◽  
Author(s):  
Zhiyang Xia ◽  
Lunjin Chen ◽  
Lei Dai ◽  
Seth G. Claudepierre ◽  
Anthony A. Chan ◽  
...  

2021 ◽  
Author(s):  
Vertti Tarvus ◽  
Lucile Turc ◽  
Markus Battarbee ◽  
Jonas Suni ◽  
Xóchitl Blanco-Cano ◽  
...  

Abstract. The foreshock located upstream of Earth's bow shock hosts a wide variety of phenomena related to the reflection of solar wind particles from the bow shock and the subsequent formation of ultra-low frequency (ULF) waves. In this work, we investigate foreshock cavitons, which are transient structures resulting from the non-linear evolution of ULF waves, and spontaneous hot flow anomalies (SHFAs), which evolve from cavitons as they accumulate suprathermal ions while being carried to the bow shock by the solar wind. Using the global hybrid-Vlasov simulation model Vlasiator, we have conducted a statistical study in which we track the motion of individual cavitons and SHFAs in order to examine their properties and evolution. In our simulation run where the interplanetary magnetic field (IMF) is directed at a sunward-southward angle of 45 degrees, continuous formation of cavitons is found up to ~ 11 Earth radii (RE) from the bow shock (along the IMF direction), and caviton-to-SHFA evolution takes place within ~ 2 RE from the shock. A third of the cavitons in our run evolve into SHFAs, and we find a comparable amount of SHFAs forming independently near the bow shock. We compare the properties of cavitons and SHFAs to prior spacecraft observations and simulations, finding good agreement. We also investigate the variation of the properties as a function of position in the foreshock, showing that the transients close to the bow shock are associated with larger depletions in the plasma density and magnetic field magnitude, along with larger increases in the plasma temperature and the level of bulk flow deflection. Our measurements of the propagation velocities of cavitons and SHFAs agree with earlier studies, showing that the transients propagate sunward in the solar wind rest frame. We show that SHFAs have a greater solar wind rest frame propagation speed than cavitons, which is related to an increase in the magnetosonic speed near the bow shock.


2021 ◽  
Vol 39 (5) ◽  
pp. 911-928
Author(s):  
Vertti Tarvus ◽  
Lucile Turc ◽  
Markus Battarbee ◽  
Jonas Suni ◽  
Xóchitl Blanco-Cano ◽  
...  

Abstract. The foreshock located upstream of Earth's bow shock hosts a wide variety of phenomena related to the reflection of solar wind particles from the bow shock and the subsequent formation of ultra-low-frequency (ULF) waves. In this work, we investigate foreshock cavitons, which are transient structures resulting from the non-linear evolution of ULF waves, and spontaneous hot flow anomalies (SHFAs), which are thought to evolve from cavitons as they accumulate suprathermal ions while being carried to the bow shock by the solar wind. Using the global hybrid-Vlasov simulation model Vlasiator, we have conducted a statistical study in which we track the motion of individual cavitons and SHFAs in order to examine their properties and evolution. In our simulation run where the interplanetary magnetic field (IMF) is directed at a sunward–southward angle of 45∘, continuous formation of cavitons is found up to ∼11 Earth radii (RE) from the bow shock (along the IMF direction), and caviton-to-SHFA evolution takes place within ∼2 RE from the shock. A third of the cavitons in our run evolve into SHFAs, and we find a comparable amount of SHFAs forming independently near the bow shock. We compare the properties of cavitons and SHFAs to prior spacecraft observations and simulations, finding good agreement. We also investigate the variation of the properties as a function of position in the foreshock, showing that transients close to the bow shock are associated with larger depletions in the plasma density and magnetic field magnitude, along with larger increases in the plasma temperature and the level of bulk flow deflection. Our measurements of the propagation velocities of cavitons and SHFAs agree with earlier studies, showing that the transients propagate sunward in the solar wind rest frame. We show that SHFAs have a greater solar wind rest frame propagation speed than cavitons, which is related to an increase in the magnetosonic speed near the bow shock.


2016 ◽  
Vol 121 (12) ◽  
pp. 11,698-11,713 ◽  
Author(s):  
Y. Nakayama ◽  
Y. Ebihara ◽  
S. Ohtani ◽  
M. Gkioulidou ◽  
K. Takahashi ◽  
...  

2020 ◽  
Author(s):  
Robert Rankin ◽  
Alexander Degeling

<p>Recent observations from the Van Allen Probes mission have established that Pc3-5 ultra-low-frequency (ULF) waves can energize ions and electrons via drift-resonance and drift-bounce resonance. The extent to which these waves contribute to the space weather of the belts is relatively poorly understood and requires sophisticated modelling and characterization of the dominant wave modes that arise in the development and recovery phase of geomagnetic storms. Despite more than four decades of observations and theoretical analysis of ULF waves, there is no framework for accurately assessing the global distribution of ULF waves and their influence on the ring current. <br>In this presentation, we describe a new global model of ULF waves that incorporates non-dipolar geomagnetic fields. The model is constrained using the GCPM of cold plasma density model and a specification of the ionosphere using the IRI and MSIS models. An algorithm is applied to adjust the initial plasma state to a quasi-static equilibrium that is then driven by a global convection electric field and ULF wave source. For specific observations by the Van Allen Probes and ARASE mission, the effect of these ULF waves on radiation belt ions and electrons is evaluated utilizing test-particle methodology and Liouville's theorem, which enables the phase space density to be followed and compared one-for-one with the satellite observations.  </p>


2018 ◽  
Vol 123 (2) ◽  
pp. 1295-1304
Author(s):  
A. Fathy ◽  
K.-H. Kim ◽  
J.-S. Park ◽  
H. Jin ◽  
C. Kletzing ◽  
...  

2016 ◽  
Vol 121 (3) ◽  
pp. 2067-2079 ◽  
Author(s):  
Hao Zheng ◽  
Robert H. Holzworth ◽  
James B. Brundell ◽  
Abram R. Jacobson ◽  
John R. Wygant ◽  
...  

2019 ◽  
Vol 124 (1) ◽  
pp. 405-419 ◽  
Author(s):  
Matina Gkioulidou ◽  
S. Ohtani ◽  
A. Y. Ukhorskiy ◽  
D. G. Mitchell ◽  
K. Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document