Reply [to “Comments on papers by L. C. Pakiser, ‘Structure of the crust and upper mantle in the western United States’ and W. H. Jackson, S. W. Stewart, and L. C. Pakiser, ‘Crustal structure in eastern Colorado from seismic-refraction measurements’”]

1964 ◽  
Vol 69 (10) ◽  
pp. 2162-2162
Author(s):  
L. C. Pakiser
1969 ◽  
Vol 22 (5) ◽  
pp. 573 ◽  
Author(s):  
R Underwood

A reconnaissance seismic refraction study of the crust and upper mantle of Bass Strait and adjacent land was undertaken in 1966 under the sponsorship of the Geophysics Group of the Australian Institute of Physics. The shot locations and times, the station locations, distances, and first arrival travel times are presented. Analysis of these data is described; they indicate a P n velocity below 8 km sec-I. Time terms are less than expected and do not agree with previous work. Crustal thicknesses cannot be computed until studies of upper crustal structure are made. These, and several mantle refraction studies, are suggested for future work.


1973 ◽  
Vol 78 (11) ◽  
pp. 1870-1880 ◽  
Author(s):  
Ralph A. Wiggins ◽  
Donald V. Helmberger

2021 ◽  
Author(s):  
Chengping Chai ◽  
Charles Ammon ◽  
Monica Maceira ◽  
Herrmann B. Robert

1980 ◽  
Vol 70 (4) ◽  
pp. 1161-1169
Author(s):  
K. Furukawa ◽  
J. F. Gettrust ◽  
L. W. Kroenke ◽  
J. F. Campbell

abstract Inversion of an 80-km-long reversed seismic refraction profile near the northwestern flank of Kōko Seamount indicates that the crust adjacent to the southern end of the Emperor Seamount chain is approximately 9-km thick with no dip in the refracting horizons. These data require positive P-velocity gradients in the crust and upper mantle to fit the observed amplitudes. The crustal refractor P velocities and crustal thickness found are in general agreement with those found previously for the Emperor chain and near the Hawaiian Ridge. It is inferred from our data that the tectonic mechanism which created the Emperor and Hawaiian chains was highly localized.


Sign in / Sign up

Export Citation Format

Share Document