scholarly journals Epoxy derivatives of aromatic polycyclic hydrocarbons. The preparation of benz[a]anthracene 8,9-oxide and 10,11-dihydrobenz[a]anthracene 8,9-oxide and their metabolism by rat liver preparations

1971 ◽  
Vol 125 (1) ◽  
pp. 159-168 ◽  
Author(s):  
P. Sims

The syntheses of 10,11-dihydrobenz[a]anthracene 8,9-oxide, benz[a]anthracene 8,9-oxide and 9-hydroxybenz[a]anthracene are described, together with those of a number of related compounds. The epoxides react both chemically and enzymically with water to yield the corresponding dihydrodiols and with reduced glutathione to form glutathione conjugates, and they react chemically with N-acetylcysteine to yield the corresponding mercapturic acids. 8,9-Dihydro-8,9-dihydroxybenz[a]anthracene, formed enzymically from benz[a]anthracene 8,9-oxide, was identical with a dihydrodiol formed when benz[a]anthracene was metabolized by rat liver homogenates. Similarly 10,11-dihydrobenz[a]anthracene 8,9-oxide yielded a dihydrodiol identical with the product formed when 10,11-dihydrobenz[a]anthracene was metabolized.

1972 ◽  
Vol 128 (2) ◽  
pp. 265-277 ◽  
Author(s):  
J. F. Waterfall ◽  
P. Sims

Products that appeared to be mainly benzo[a]pyrene 7,8-oxide and benzo[a]pyrene 9,10-oxide were synthesized and their chemical and biochemical properties were investigated. The oxides were unstable and readily rearranged to phenols. They were converted by rat liver homogenates and microsomal preparations into phenols and dihydrodiols, but glutathione conjugates were not formed in appreciable amounts. The dihydrodiols formed from benzo[a]pyrene 7,8- and 9,10-oxide by rat liver microsomal preparations were identical in their chromatographic and spectrographic properties with dihydrodiols formed when benzo[a]pyrene was metabolized by rat liver homogenates. 9,10-Dihydrobenzo[a]pyrene 7,8-oxide and 7,8-dihydrobenzo[a]pyrene 9,10-oxide were also synthesized. They were converted by rat liver homogenates and microsomal preparations into the related cis- and trans-dihydroxy compounds. Glutathione conjugates were formed from the oxides by rat liver homogenates. Both 7,8- and 9,10-dihydrobenzo[a]pyrene were metabolized by rat liver homogenates to mainly the trans-isomers of the related dihydroxy compounds. In experiments with boiled homogenates, the benzo[a]pyrene oxides were converted into phenols, whereas the dihydrobenzo[a]pyrene oxides yielded small amounts of the related dihydroxy compounds.


1972 ◽  
Vol 130 (1) ◽  
pp. 27-35 ◽  
Author(s):  
P. Sims

The synthesis of dibenz[a,c]anthracene 10,11-oxide is described. The oxide was unstable and was rapidly decomposed with cold mineral acid into a mixture of 10- and 11- hydroxydibenz[a,c]anthracene. The oxide was converted by rat liver microsomal preparations and homogenates into a product that is probably 10,11-dihydro-10,11-dihydroxydibenz[a,c]anthracene and which was identical with the metabolite formed when dibenz[a,c]anthracene was metabolized by rat liver homogenates. The oxide did not react either chemically or enzymically with GSH. 10,11-Dihydrodibenz[a,c]anthracene and 10,11-dihydrodibenz[a,c]anthracene 12,13-oxide were both metabolized by rat liver preparations into trans-10,11,12,13-tetrahydro-10,11-dihydroxydibenz[a,c] anthracene and the oxide was converted chemically into this dihydroxy compound, and it reacted chemically but not enzymically with GSH. In the alkylation of 4-(p-nitrobenzyl)pyridine, the ‘K-region’ epoxide, dibenz[a,h]anthracene 5,6-oxide, was more active than either dibenz[a,c]anthracene 10,11-oxide or 10,11-dihydrobenz[a,c]anthracene 12,13-oxide.


1967 ◽  
Vol 105 (2) ◽  
pp. 591-598 ◽  
Author(s):  
P Sims

1. 7- and 12-Methylbenz[a]anthracene were converted by rat-liver homogenates into the corresponding hydroxymethyl derivatives, products that are probably the 8,9-dihydro-8,9-dihydroxy and the 5,6-dihydro-5,6-dihydroxy derivatives, and a number of phenolic products. 2. Both hydrocarbons were converted into glutathione conjugates; that from 7-methylbenz[a]anthracene was also formed, together with 5,6-dihydro-5,6-dihydroxy- and 5-hydroxy-benz[a]anthracene, from 5,6-epoxy-5,6-dihydro-7-methylbenz[a]anthracene. 3. 7- and 12-Hydroxymethyl-benz[a]anthracene were converted into products that are probably 8,9-dihydro-8,9-dihydroxy derivatives, and into phenols. 4. The preparation of a number of derivatives of the hydrocarbons is described. 5. The oxidation of the hydrocarbons with lead tetra-acetate was investigated.


1973 ◽  
Vol 131 (2) ◽  
pp. 405-413 ◽  
Author(s):  
P. Sims

The syntheses of 7,12-dimethylbenz[a]anthracene 5,6-oxide, 7-acetoxymethyl-12-methylbenz[a]anthracene 5,6-oxide and a product that appears to be mainly 7-hydroxymethyl-12-methylbenz[a]anthracene 5,6-oxide are described. The compounds readily rearranged to phenols in the presence of mineral acid, and 7,12-dimethylbenz[a]anthracene 5,6-oxide and its 7-hydroxymethyl derivative reacted slowly with water to yield trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and trans-5,6-dihydro-5,6-dihydroxy-7-hydroxymethyl-12-methylbenz [a]anthracene respectively. Both epoxides were converted enzymically by rat liver microsomal fractions and homogenates into the related trans-dihydrodiols. The epoxides reacted chemically with GSH to form conjugates that were identical with the conjugates formed when the epoxides were incubated with rat liver homogenates. The GSH conjugates were more stable to acid than conjugates derived from other arene oxides. In the alkylation of 4-(p-nitrobenzyl)pyridine, 7,12-dimethyl-benz[a]anthracene 5,6-oxide was more active than the 5,6-oxides of 7-methylbenz[a]-anthracene and benz[a]anthracene.


Sign in / Sign up

Export Citation Format

Share Document