scholarly journals Effects of dexamethasone treatment on insulin-stimulated rates of glycolysis and glycogen synthesis in isolated incubated skeletal muscles of the rat

1987 ◽  
Vol 246 (2) ◽  
pp. 551-554 ◽  
Author(s):  
B Leighton ◽  
R A J Challiss ◽  
F J Lozeman ◽  
E A Newsholme

1. Rats were treated with dexamethasone for 4 days before measurement of the rates of lactate formation [which is an index of hexose transport; see Challiss, Lozeman, Leighton & Newsholme (1986) Biochem. J. 233, 377-381] and glycogen synthesis in response to various concentrations of insulin in isolated incubated soleus and extensor digitorum longus muscle preparations. 2. The concentration of insulin required to stimulate these processes half-maximally in soleus and extensor digitorum longus muscles isolated from control rats was about 100 muunits/ml. 3. Dexamethasone increases the concentration of insulin required to stimulate glycolysis half-maximally in soleus and extensor digitorum longus preparations to 250 and 300 muunits/ml respectively. The respective insulin concentrations necessary to stimulate glycogen synthesis half-maximally were about 430 and 370 muunits/ml for soleus and extensor digitorum longus muscle preparations isolated from steroid-treated rats. 5. Dexamethasone treatment did not change the amount of insulin bound to soleus muscle.

1996 ◽  
Vol 43 (4) ◽  
pp. 693-700 ◽  
Author(s):  
J Moraczewski ◽  
E Piekarska ◽  
M Zimowska ◽  
M Sobolewska

Calpains--non-lysosomal intracellular calcium-activated neutral proteinases, form a family consisting of several distinct members. Two of the isoenzymes: mu (calpain I) and m (calpain II) responded differently to the injury during complete regeneration of Extensor digitorum longus (EDL) muscle and partial regeneration of Soleus muscle. In the crushed EDL the level of m-calpain on the 3rd and 7th day of regeneration was higher than in non-operated muscles, whereas the activity of this calpain in injured Soleus decreased. The level of mu-calpain in EDL oscillated irregularly during regeneration whereas in Soleus of both injured and contralateral muscles its level rapidly rose. Our results support the hypothesis that m-calpain is involved in the process of fusion of myogenic cells whereas mu-calpain plays a significant but indirect role in muscle regeneration.


1986 ◽  
Vol 14 (2) ◽  
pp. 328-329 ◽  
Author(s):  
FRED J. LOZEMAN ◽  
BRENDAN LEIGHTON ◽  
R. A. JOHN CHALLISS ◽  
SIMON A. OWEN ◽  
ERIC A. NEWSHOLME

Sign in / Sign up

Export Citation Format

Share Document