insulin sensitivity
Recently Published Documents





2022 ◽  
Vol 11 (2) ◽  
pp. 230-237
Daoming Li ◽  
Yang Zhu ◽  
Yonghua Wang ◽  
Qiong Zou ◽  
Jinzhu Duan ◽  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262584
Hannah M. Kinsella ◽  
Laura D. Hostnik ◽  
Hailey A. Snyder ◽  
Sarah E. Mazur ◽  
Ahmed M. Kamr ◽  

The equine neonate is considered to have impaired glucose tolerance due to delayed maturation of the pancreatic endocrine system. Few studies have investigated insulin sensitivity in newborn foals using dynamic testing methods. The objective of this study was to assess insulin sensitivity by comparing the insulin-modified frequently sampled intravenous glucose tolerance test (I-FSIGTT) between neonatal foals and adult horses. This study was performed on healthy neonatal foals (n = 12), 24 to 60 hours of age, and horses (n = 8), 3 to 14 years of age using dextrose (300 mg/kg IV) and insulin (0.02 IU/kg IV). Insulin sensitivity (SI), acute insulin response to glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) were calculated using minimal model analysis. Proxy measurements were calculated using fasting insulin and glucose concentrations. Nonparametric statistical methods were used for analysis and reported as median and interquartile range (IQR). SI was significantly higher in foals (18.3 L·min-1· μIU-1 [13.4–28.4]) compared to horses (0.9 L·min-1· μIU-1 [0.5–1.1]); (p < 0.0001). DI was higher in foals (12 × 103 [8 × 103−14 × 103]) compared to horses (4 × 102 [2 × 102−7 × 102]); (p < 0.0001). AIRg and Sg were not different between foals and horses. The modified insulin to glucose ratio (MIRG) was lower in foals (1.72 μIUinsulin2/10·L·mgglucose [1.43–2.68]) compared to horses (3.91 μIU insulin2/10·L·mgglucose [2.57–7.89]); (p = 0.009). The homeostasis model assessment of beta cell function (HOMA-BC%) was higher in horses (78.4% [43–116]) compared to foals (23.2% [17.8–42.2]); (p = 0.0096). Our results suggest that healthy neonatal foals are insulin sensitive in the first days of life, which contradicts current literature regarding the equine neonate. Newborn foals may be more insulin sensitive immediately after birth as an evolutionary adaptation to conserve energy during the transition to extrauterine life.

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 311
Gabriele Brosolo ◽  
Andrea Da Porto ◽  
Luca Bulfone ◽  
Laura Scandolin ◽  
Antonio Vacca ◽  

Recent evidence indicates that mildly increased fasting and post-oral load blood glucose concentrations contribute to development of organ damage in nondiabetic patients with hypertension. In previous studies, vitamin D deficiency was associated with decreased glucose tolerance. The aim of this study was to examine the relationships between serum 25(OH)D levels and glucose tolerance and insulin sensitivity in hypertension. In 187 nondiabetic essential hypertensive patients free of cardiovascular or renal complications, we measured serum 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH) and performed a standard oral glucose tolerance test (OGTT). Patients with 25(OH)D deficiency/insufficiency were older and had significantly higher blood pressure, fasting and post-OGTT (G-AUC) glucose levels, post-OGTT insulin (I-AUC), PTH levels, and prevalence of metabolic syndrome than patients with normal serum 25(OH)D. 25(OH)D levels were inversely correlated with age, blood pressure, fasting glucose, G-AUC, triglycerides, and serum calcium and PTH, while no significant relationships were found with body mass index (BMI), fasting insulin, I-AUC, HOMA index, and renal function. In a multivariate regression model, greater G-AUC was associated with lower 25(OH)D levels independently of BMI and seasonal vitamin D variations. Thus, in nondiabetic hypertensive patients, 25(OH)D deficiency/insufficiency could contribute to impaired glucose tolerance without directly affecting insulin sensitivity.

2022 ◽  
Vol 13 (1) ◽  
Yaqiong Chen ◽  
Jiang Wang ◽  
Yibing Wang ◽  
Pengfei Wang ◽  
Zan Zhou ◽  

AbstractThe molecular targets and mechanisms of propolis ameliorating metabolic syndrome are not fully understood. Here, we report that Brazilian green propolis reduces fasting blood glucose levels in obese mice by disrupting the formation of CREB/CRTC2 transcriptional complex, a key regulator of hepatic gluconeogenesis. Using a mammalian two-hybrid system based on CREB-CRTC2, we identify artepillin C (APC) from propolis as an inhibitor of CREB-CRTC2 interaction. Without apparent toxicity, APC protects mice from high fat diet-induced obesity, decreases fasting glucose levels, enhances insulin sensitivity and reduces lipid levels in the serum and liver by suppressing CREB/CRTC2-mediated both gluconeogenic and SREBP transcriptions. To develop more potential drugs from APC, we designed and found a novel compound, A57 that exhibits higher inhibitory activity on CREB-CRTC2 association and better capability of improving insulin sensitivity in obese animals, as compared with APC. In this work, our results indicate that CREB/CRTC2 is a suitable target for developing anti-metabolic syndrome drugs.

Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 109
Angelo Maria Patti ◽  
Rosaria Vincenza Giglio ◽  
Nikolaos Papanas ◽  
Dragos Serban ◽  
Anca Pantea Stoian ◽  

The current management of Type 2 Diabetes Mellitus (T2DM) includes incretin-based treatments able to enhance insulin secretion and peripheral insulin sensitivity as well as improve body mass, inflammation, plasma lipids, blood pressure, and cardiovascular outcomes. Dietary Free Fatty Acids (FFA) regulate metabolic and anti-inflammatory processes through their action on incretins. Selective synthetic ligands for FFA1-4 receptors have been developed as potential treatments for T2DM. To comprehensively review the available evidence for the potential role of FFA receptor agonists in the treatment of T2DM, we performed an electronic database search assessing the association between FFAs, T2DM, inflammation, and incretins. Evidence indicates that FFA1-4 agonism increases insulin sensitivity, induces body mass loss, reduces inflammation, and has beneficial metabolic effects. There is a strong inter-relationship between FFAs and incretins. FFA receptor agonism represents a potential target for the treatment of T2DM and may provide an avenue for the management of cardiometabolic risk in susceptible individuals. Further research promises to shed more light on this emerging topic.

2022 ◽  
Vol 12 ◽  
Lin Zhu ◽  
Julia An ◽  
Sivaprakasam Chinnarasu ◽  
Thao Luu ◽  
Yasminye D. Pettway ◽  

Mounting evidence has shown that CETP has important physiological roles in adapting to chronic nutrient excess, specifically, to protect against diet-induced insulin resistance. However, the underlying mechanisms for the protective roles of CETP in metabolism are not yet clear. Mice naturally lack CETP expression. We used transgenic mice with a human CETP minigene (huCETP) controlled by its natural flanking region to further understand CETP-related physiology in response to obesity. Female huCETP mice and their wild-type littermates were fed a high-fat diet for 6 months. Blood lipid profile and liver lipid metabolism were studied. Insulin sensitivity was analyzed with euglycemic-hyperinsulinemic clamp studies combined with 3H-glucose tracer techniques. While high-fat diet feeding induced obesity for huCETP mice and their wild-type littermates lacking CETP expression, insulin sensitivity was higher for female huCETP mice than for their wild-type littermates. There was no difference in insulin sensitivity for male huCETP mice vs. littermates. The increased insulin sensitivity in females was largely caused by the better insulin-mediated suppression of hepatic glucose production. In huCETP females, CETP in the circulation decreased HDL-cholesterol content and increased liver cholesterol uptake and liver cholesterol and oxysterol contents, which was associated with the upregulation of LXR target genes in long-chain polyunsaturated fatty acid biosynthesis and PPARα target genes in fatty acid β-oxidation in the liver. The upregulated fatty acid β-oxidation may account for the improved fatty liver and liver insulin action in female huCETP mice. This study provides further evidence that CETP has beneficial physiological roles in the metabolic adaptation to nutrient excess by promoting liver fatty acid oxidation and hepatic insulin sensitivity, particularly for females.

2022 ◽  
Vol 14 (1) ◽  
Elie Antoun ◽  
Prachand Issarapu ◽  
Chiara di Gravio ◽  
Smeeta Shrestha ◽  
Modupeh Betts ◽  

Abstract Background The prevalence of cardiometabolic disease (CMD) is rising globally, with environmentally induced epigenetic changes suggested to play a role. Few studies have investigated epigenetic associations with CMD risk factors in children from low- and middle-income countries. We sought to identify associations between DNA methylation (DNAm) and CMD risk factors in children from India and The Gambia. Results Using the Illumina Infinium HumanMethylation 850 K Beadchip array, we interrogated DNAm in 293 Gambian (7–9 years) and 698 Indian (5–7 years) children. We identified differentially methylated CpGs (dmCpGs) associated with systolic blood pressure, fasting insulin, triglycerides and LDL-Cholesterol in the Gambian children; and with insulin sensitivity, insulinogenic index and HDL-Cholesterol in the Indian children. There was no overlap of the dmCpGs between the cohorts. Meta-analysis identified dmCpGs associated with insulin secretion and pulse pressure that were different from cohort-specific dmCpGs. Several differentially methylated regions were associated with diastolic blood pressure, insulin sensitivity and fasting glucose, but these did not overlap with the dmCpGs. We identified significant cis-methQTLs at three LDL-Cholesterol-associated dmCpGs in Gambians; however, methylation did not mediate genotype effects on the CMD outcomes. Conclusion This study identified cardiometabolic biomarkers associated with differential DNAm in Indian and Gambian children. Most associations were cohort specific, potentially reflecting environmental and ethnic differences.

2022 ◽  
Vol 23 (2) ◽  
pp. 596
Han-Chow E. Koh ◽  
Chao Cao ◽  
Bettina Mittendorfer

Plasma insulin clearance is an important determinant of plasma insulin concentration. In this review, we provide an overview of the factors that regulate insulin removal from plasma and discuss the interrelationships among plasma insulin clearance, excess adiposity, insulin sensitivity, and type 2 diabetes (T2D). We conclude with the perspective that the commonly observed lower insulin clearance rate in people with obesity, compared with lean people, is not a compensatory response to insulin resistance but occurs because insulin sensitivity and insulin clearance are mechanistically, directly linked. Furthermore, insulin clearance decreases postprandially because of the marked increase in insulin delivery to tissues that clear insulin. The commonly observed high postprandial insulin clearance in people with obesity and T2D likely results from the relatively low insulin secretion rate, not an impaired adaptation of tissues that clear insulin.

2022 ◽  
Vol 12 ◽  
Larissa C. Novo ◽  
Ligia Cavani ◽  
Pablo Pinedo ◽  
Pedro Melendez ◽  
Francisco Peñagaricano

Visceral fat is related to important metabolic processes, including insulin sensitivity and lipid mobilization. The goal of this study was to identify individual genes, pathways, and molecular processes implicated in visceral fat deposition in dairy cows. Data from 172 genotyped Holstein cows classified at slaughterhouse as having low (n = 77; omental fold <5 mm in thickness and minimum fat deposition in omentum) or high (n = 95; omental fold ≥20 mm in thickness and marked fat deposition in omentum) omental fat were analyzed. The identification of regions with significant additive and non-additive genetic effects was performed using a two-step mixed model-based approach. Genomic scans were followed by gene-set analyses in order to reveal the genetic mechanisms controlling abdominal obesity. The association mapping revealed four regions located on BTA19, BTA20 and BTA24 with significant additive effects. These regions harbor genes, such as SMAD7, ANKRD55, and the HOXB family, that are implicated in lipolysis and insulin tolerance. Three regions located on BTA1, BTA13, and BTA24 showed marked non-additive effects. These regions harbor genes MRAP, MIS18A, PRNP and TSHZ1, that are directly implicated in adipocyte differentiation, lipid metabolism, and insulin sensitivity. The gene-set analysis revealed functional terms related to cell arrangement, cell metabolism, cell proliferation, cell signaling, immune response, lipid metabolism, and membrane permeability, among other functions. We further evaluated the genetic link between visceral fat and two metabolic disorders, ketosis, and displaced abomasum. For this, we analyzed 28k records of incidence of metabolic disorders from 14k cows across lactations using a single-step genomic BLUP approach. Notably, the region on BTA20 significantly associated with visceral fat deposition was also associated with the incidence of displaced abomasum. Overall, our findings suggest that visceral fat deposition in dairy cows is controlled by both additive and non-additive effects. We detected at least one region with marked pleiotropic effects affecting both visceral fat accumulation and displaced abomasum.

Sign in / Sign up

Export Citation Format

Share Document