scholarly journals Real-time fabric defect detection based on multi-scale convolutional neural network

2020 ◽  
Vol 2 (4) ◽  
pp. 189-196
Author(s):  
Shuxuan Zhao ◽  
Li Yin ◽  
Jie Zhang ◽  
Junliang Wang ◽  
Ray Zhong
2020 ◽  
Vol 15 ◽  
pp. 155892502090302 ◽  
Author(s):  
Zhoufeng Liu ◽  
Baorui Wang ◽  
Chunlei Li ◽  
Miao Yu ◽  
Shumin Ding

Fabric defect detection plays an important role in controlling the quality of textile production. In this article, a novel fabric defect detection algorithm is proposed based on a multi-scale convolutional neural network and low-rank decomposition model. First, multi-scale convolutional neural network, which can extract the multi-scale deep feature of the image using multiple nonlinear transformations, is adopted to improve the characterization ability of fabric images with complex textures. The effective feature extraction makes the background lie in a low-rank subspace, and a sparse defect deviates from the low-rank subspace. Then, the low-rank decomposition model is constructed to decompose the feature matrix into the low-rank part (background) and the sparse part (salient defect). Finally, the saliency maps generated by the sparse matrix are segmented based on an improved optimal threshold to locate the fabric defect regions. Experimental results indicate that the feature extracted by the multi-scale convolutional neural network is more suitable for characterizing the fabric texture than the traditional hand-crafted feature extraction methods, such as histogram of oriented gradient, local binary pattern, and Gabor. The adopted low-rank decomposition model can effectively separate the defects from the background. Moreover, the proposed method is superior to state-of-the-art methods in terms of its adaptability and detection efficiency.


2020 ◽  
Vol 12 (05-SPECIAL ISSUE) ◽  
pp. 950-955
Author(s):  
Eldho Paul ◽  
Nivedha K ◽  
Nivethika M ◽  
Pavithra V ◽  
Priyadharshini G

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 70130-70140 ◽  
Author(s):  
Wenbin Ouyang ◽  
Bugao Xu ◽  
Jue Hou ◽  
Xiaohui Yuan

2020 ◽  
pp. 004051752092860 ◽  
Author(s):  
Junfeng Jing ◽  
Zhen Wang ◽  
Matthias Rätsch ◽  
Huanhuan Zhang

Deep learning–based fabric defect detection methods have been widely investigated to improve production efficiency and product quality. Although deep learning–based methods have proved to be powerful tools for classification and segmentation, some key issues remain to be addressed when applied to real applications. Firstly, the actual fabric production conditions of factories necessitate higher real-time performance of methods. Moreover, fabric defects as abnormal samples are very rare compared with normal samples, which results in data imbalance. It makes model training based on deep learning challenging. To solve these problems, an extremely efficient convolutional neural network, Mobile-Unet, is proposed to achieve the end-to-end defect segmentation. The median frequency balancing loss function is used to overcome the challenge of sample imbalance. Additionally, Mobile-Unet introduces depth-wise separable convolution, which dramatically reduces the complexity cost and model size of the network. It comprises two parts: encoder and decoder. The MobileNetV2 feature extractor is used as the encoder, and then five deconvolution layers are added as the decoder. Finally, the softmax layer is used to generate the segmentation mask. The performance of the proposed model has been evaluated by public fabric datasets and self-built fabric datasets. In comparison with other methods, the experimental results demonstrate that segmentation accuracy and detection speed in the proposed method achieve state-of-the-art performance.


2020 ◽  
pp. 004051752095522
Author(s):  
Feng Li ◽  
Feng Li

In this paper, a bag of tricks is proposed to improve the precision of fabric defect detection. Although the general state-of-the-art convolutional neural network detection algorithm can achieve a better detection effect, in fact, the detection precision still has enough room to improve on fabric defect detection. Therefore, we propose three tricks to further improve the precision. Firstly, we use multiscale training, which scales the single input image into a number of images of different resolutions for training, so as to be able to adapt to the box distribution of different scales. Secondly, we use the dimension clusters method. By observing the distribution of the width and the height of the defect size in the fabric dataset, we find that the distribution of the defect size in the dataset is extremely unbalanced and the size span is large. We believe that the training results of the default prior boxes setting might not be optimal, so we conduct dimensional clustering for the width and height of the defect size of the dataset, so as to make the network model easier to learn. Thirdly, we use soft non-maximum suppression instead of traditional non-maximum suppression to avoid the situation that the same kinds of defect category in the dataset are overlapped and eliminated as repeated detection. With this bag of tricks, we effectively improve the precision of fabric defect detection by 8.9% mAP on the basis of the baseline of state-of-the-art convolutional neural network detection algorithm.


Sign in / Sign up

Export Citation Format

Share Document