Mobile-Unet: An efficient convolutional neural network for fabric defect detection

2020 ◽  
pp. 004051752092860 ◽  
Author(s):  
Junfeng Jing ◽  
Zhen Wang ◽  
Matthias Rätsch ◽  
Huanhuan Zhang

Deep learning–based fabric defect detection methods have been widely investigated to improve production efficiency and product quality. Although deep learning–based methods have proved to be powerful tools for classification and segmentation, some key issues remain to be addressed when applied to real applications. Firstly, the actual fabric production conditions of factories necessitate higher real-time performance of methods. Moreover, fabric defects as abnormal samples are very rare compared with normal samples, which results in data imbalance. It makes model training based on deep learning challenging. To solve these problems, an extremely efficient convolutional neural network, Mobile-Unet, is proposed to achieve the end-to-end defect segmentation. The median frequency balancing loss function is used to overcome the challenge of sample imbalance. Additionally, Mobile-Unet introduces depth-wise separable convolution, which dramatically reduces the complexity cost and model size of the network. It comprises two parts: encoder and decoder. The MobileNetV2 feature extractor is used as the encoder, and then five deconvolution layers are added as the decoder. Finally, the softmax layer is used to generate the segmentation mask. The performance of the proposed model has been evaluated by public fabric datasets and self-built fabric datasets. In comparison with other methods, the experimental results demonstrate that segmentation accuracy and detection speed in the proposed method achieve state-of-the-art performance.

2020 ◽  
Vol 12 (05-SPECIAL ISSUE) ◽  
pp. 950-955
Author(s):  
Eldho Paul ◽  
Nivedha K ◽  
Nivethika M ◽  
Pavithra V ◽  
Priyadharshini G

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 70130-70140 ◽  
Author(s):  
Wenbin Ouyang ◽  
Bugao Xu ◽  
Jue Hou ◽  
Xiaohui Yuan

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1033
Author(s):  
Qiaodi Wen ◽  
Ziqi Luo ◽  
Ruitao Chen ◽  
Yifan Yang ◽  
Guofa Li

By detecting the defect location in high-resolution insulator images collected by unmanned aerial vehicle (UAV) in various environments, the occurrence of power failure can be timely detected and the caused economic loss can be reduced. However, the accuracies of existing detection methods are greatly limited by the complex background interference and small target detection. To solve this problem, two deep learning methods based on Faster R-CNN (faster region-based convolutional neural network) are proposed in this paper, namely Exact R-CNN (exact region-based convolutional neural network) and CME-CNN (cascade the mask extraction and exact region-based convolutional neural network). Firstly, we proposed an Exact R-CNN based on a series of advanced techniques including FPN (feature pyramid network), cascade regression, and GIoU (generalized intersection over union). RoI Align (region of interest align) is introduced to replace RoI pooling (region of interest pooling) to address the misalignment problem, and the depthwise separable convolution and linear bottleneck are introduced to reduce the computational burden. Secondly, a new pipeline is innovatively proposed to improve the performance of insulator defect detection, namely CME-CNN. In our proposed CME-CNN, an insulator mask image is firstly generated to eliminate the complex background by using an encoder-decoder mask extraction network, and then the Exact R-CNN is used to detect the insulator defects. The experimental results show that our proposed method can effectively detect insulator defects, and its accuracy is better than the examined mainstream target detection algorithms.


2020 ◽  
pp. 004051752095522
Author(s):  
Feng Li ◽  
Feng Li

In this paper, a bag of tricks is proposed to improve the precision of fabric defect detection. Although the general state-of-the-art convolutional neural network detection algorithm can achieve a better detection effect, in fact, the detection precision still has enough room to improve on fabric defect detection. Therefore, we propose three tricks to further improve the precision. Firstly, we use multiscale training, which scales the single input image into a number of images of different resolutions for training, so as to be able to adapt to the box distribution of different scales. Secondly, we use the dimension clusters method. By observing the distribution of the width and the height of the defect size in the fabric dataset, we find that the distribution of the defect size in the dataset is extremely unbalanced and the size span is large. We believe that the training results of the default prior boxes setting might not be optimal, so we conduct dimensional clustering for the width and height of the defect size of the dataset, so as to make the network model easier to learn. Thirdly, we use soft non-maximum suppression instead of traditional non-maximum suppression to avoid the situation that the same kinds of defect category in the dataset are overlapped and eliminated as repeated detection. With this bag of tricks, we effectively improve the precision of fabric defect detection by 8.9% mAP on the basis of the baseline of state-of-the-art convolutional neural network detection algorithm.


Sign in / Sign up

Export Citation Format

Share Document