Multi-step radiographic image enhancement conforming to weld defect segmentation

2015 ◽  
Vol 9 (11) ◽  
pp. 943-950 ◽  
Author(s):  
Changying Dang ◽  
Yulin Xiao ◽  
Jianmin Gao ◽  
Zhao Wang ◽  
Fumin Chen
2012 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Suhaila Abdul Halim ◽  
Arsmah Ibrahim ◽  
Yupiter Harangan Prasada Manurung

Accurate inspection of welded materials is important in relation to achieve acceptable standards. Radiography, a non-destructive test method, is commonly used to evaluate the internal condition of a material with respect to defect detection. The presence of noise in low resolution of radiographic images significantly complicates analysis; therefore attaining higher quality radiographic images makes defect detection more readily achievable. This paper presents a study pertaining to the quality enhancement of radiographic images with respect to different types of defects. A series of digital radiographic weld flaw images were smoothed using multiple smoothing techniques to remove inherent noise followed by top and bottom hat morphological transformations. Image quality was evaluated quantitatively with respect to SNR, PSNR and MAE. The results indicate that smoothing enhances the quality of radiographic images, thereby promoting defect detection with the respect to original radiographic images. 


2012 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Suhaila Abdul Halim ◽  
Arsmah Ibrahim ◽  
Yupiter Harangan Prasada Manurung

Accurate inspection ofweldedmaterials is important in relation to achieve acceptable standards. Radiography, a non-destructive test method, is commonly used to evaluate the internal condition ofa material with respect to defect detection. Thepresence ofnoise in low resolution ofradiographic images significantly complicates analysis; thereforeattaining higher quality radiographic images makes defect detection more readily achievable. This paper presents a study pertaining to the quality enhancement of radiographic images with respect to different types of defects. A series of digital radiographic weld flaw images were smoothed using multiple smoothing techniques to remove inherent noise followed by top and bottom hat morphological transformations. Image quality was evaluated quantitatively with respect to SNR, PSNR andMAE. The results indicate that smoothing enhances the quality ofradiographic images, thereby promoting defect detection with the respect to original radiographic images.


2019 ◽  
Vol 8 (4) ◽  
pp. 11228-11236

In this paper, automatic weld defect segmentation into the radiographic image non-destructive evaluation and testing, with orthogonal polynomials transformation-enhancement (OPT-E) is presented. This proposed system defect identification the given defect Radiographic image. In digital radiographic images, the unknown masses appear very light with weak edges, and hence image enhancement technique needs to be applied with transform domain and radiographic images of some illustrative weld deserts invent. The proposed scheme has three phases. In first phase, a radiographic image enhancement technique, which is performed by logarithmic common variance and enhancement factor, computed from the absolute value of the orthogonal polynomials transformation coefficient as principal parameters for increasing the energy of the masses in the digital radiographic image enhancement. In case of successful enhanced of image in addition to gradient estimation scheme is working to point the edges current, in the next phase. The consequential edge image is again applied with orthogonal polynomials. In the final phase, edge tracking are the salient features with angle based defect identification. Experimental is improved quality of images and high relative segmentation by OPT-E.


Sign in / Sign up

Export Citation Format

Share Document