scholarly journals Multiobjective optimal control of a non-smooth semilinear elliptic partial differential equation

Author(s):  
Constantin Christof ◽  
Georg Müller

This paper is concerned with the derivation and analysis of first-order necessary optimality conditions for a class of multiobjective optimal control problems governed by an elliptic non-smooth semilinear partial differential equation. Using an adjoint calculus for the inverse of the non-linear and non-differentiable directional derivative of the solution map of the considered PDE, we extend the concept of strong stationarity to the multiobjective setting and demonstrate that the properties of weak and proper Pareto stationarity can also be characterized by suitable multiplier systems that involve both primal and dual quantities. The established optimality conditions imply in particular that Pareto stationary points possess additional regularity properties and that mollification approaches are - in a certain sense - exact for the studied problem class. We further show that the obtained results are closely related to rather peculiar hidden regularization effects that only reveal themselves when the control is eliminated and the problem is reduced to the state. This observation is also new for the case of a single objective function. The paper concludes with numerical experiments that illustrate that the derived optimality systems are amenable to numerical solution procedures.

Author(s):  
Majid Darehmiraki ◽  
Mohammad Hadi Farahi ◽  
Sohrab Effati

In this paper, two approaches are used to solve a class of the distributed optimal control problems defined on rectangular domains. In the first approach, a meshless method for solving the distributed optimal control problems is proposed; this method is based on separable representation of state and control functions. The approximation process is done in two fundamental stages. First, the partial differential equation (PDE) constraint is transformed to an algebraic system by weighted residual method, and then, Bezier curves are used to approximate the action of control and state. In the second approach, the Bernstein polynomials together with Galerkin method are utilized to solve partial differential equation coupled system, which is a necessary and sufficient condition for the main problem. The proposed techniques are easy to implement, efficient, and yield accurate results. Numerical examples are provided to illustrate the flexibility and efficiency of the proposed method.


2014 ◽  
Vol 4 (2) ◽  
pp. 166-188 ◽  
Author(s):  
Nary Kim ◽  
Hyung-Chun Lee

AbstractIn this article, we propose and analyse a sparse grid collocation method to solve an optimal control problem involving an elliptic partial differential equation with random coefficients and forcing terms. The input data are assumed to be dependent on a finite number of random variables. We prove that an optimal solution exists, and derive an optimality system. A Galerkin approximation in physical space and a sparse grid collocation in the probability space is used. Error estimates for a fully discrete solution using an appropriate norm are provided, and we analyse the computational efficiency. Computational evidence complements the present theory, to show the effectiveness of our stochastic collocation method.


Sign in / Sign up

Export Citation Format

Share Document