directional derivative
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 53)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 69 (1) ◽  
pp. 1-32
Author(s):  
Abbas Edalat

We derive new representations for the generalised Jacobian of a locally Lipschitz map between finite dimensional real Euclidean spaces as the lower limit (i.e., limit inferior) of the classical derivative of the map where it exists. The new representations lead to significantly shorter proofs for the basic properties of the subgradient and the generalised Jacobian including the chain rule. We establish that a sequence of locally Lipschitz maps between finite dimensional Euclidean spaces converges to a given locally Lipschitz map in the L-topology—that is, the weakest refinement of the sup norm topology on the space of locally Lipschitz maps that makes the generalised Jacobian a continuous functional—if and only if the limit superior of the sequence of directional derivatives of the maps in a given vector direction coincides with the generalised directional derivative of the given map in that direction, with the convergence to the limit superior being uniform for all unit vectors. We then prove our main result that the subspace of Lipschitz C ∞ maps between finite dimensional Euclidean spaces is dense in the space of Lipschitz maps equipped with the L-topology, and, for a given Lipschitz map, we explicitly construct a sequence of Lipschitz C ∞ maps converging to it in the L-topology, allowing global smooth approximation of a Lipschitz map and its differential properties. As an application, we obtain a short proof of the extension of Green’s theorem to interval-valued vector fields. For infinite dimensions, we show that the subgradient of a Lipschitz map on a Banach space is upper continuous, and, for a given real-valued Lipschitz map on a separable Banach space, we construct a sequence of Gateaux differentiable functions that converges to the map in the sup norm topology such that the limit superior of the directional derivatives in any direction coincides with the generalised directional derivative of the Lipschitz map in that direction.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012137
Author(s):  
Kavita Avinash Patil ◽  
K V Mahendra Prashanth ◽  
A Ramalingaiah

Abstract The human bones are categorized based on elemental micro architecture and porosity. The porosity of the inner trabecular bone is high that is 40-95% and the nature of the bone is soft and spongy whereas the cortical bone is harder and is less porous that is 5 to 15%. Osteoporosis is a disease that normally affects women usually after their menopause. It largely causes mild bone fractures and further stages lead to the demise of an individual. The detection of Osteoporosis in Lumbar Spine has been widely recognized as a promising way to frequent fractures. Therefore, premature analysis of osteoporosis will estimate the risk of the bone fracture which prevents life threats. The paper is systematized in two different sections to classify normal (non-osteoporosis) and abnormal(osteoporosis)Lumbar spine trabecular bone. In this method, the first section is based on discriminating the lumbar spine trabecular bone micro-architecture predisposing by means of first and second order directional derivative of Laplacian of Gaussian filter with different standard deviation to acquire the minimum and maximum responses. The dimension reduction of texture features, quantization and adjacent scale coding with weighted multipliers are used to lessen the intensity variations of texture features. The second section is based on the reduction of histogram features as a training data set for classification of normal and osteoporotic images of lumbar spine (L1-L4) using K-Nearest Neighborhood (KNN) classifier. The tested dataset result gives effective classification accuracy of 97.22% with lesser texture feature dimension. The usage of weight multiplier as well as quantization technique plays a major role for the improvement of accuracy to diagnose osteoporosis for an input noisy and noiseless image.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michel C. Delfour

PurposeThe object of the paper is to illustrate how to obtain the topological derivative as a semidifferential in a general and practical mathematical setting for d-dimensional perturbations of a bounded open domain in the n-dimensional Euclidean space.Design/methodology/approachThe underlying methodology uses mathematical notions and powerful tools with ready to check assumptions and ready to use formulas via theorems on the one-sided derivative of parametrized minima and minimax.FindingsThe theory and the examples indicate that the methodology applies to a wide range of problems: (1) compliance and (2) state constrained objective functions where the coupled state/adjoint state equations appear without a posteriori substitution of the adjoint state.Research limitations/implicationsDirect approach that considerably simplifies the analysis and computations.Originality/valueIt was known that the shape derivative was a differential. But the topological derivative is only a semidifferential, that is, a one-sided directional derivative, which is not linear with respect to the direction, and the directions are d-dimensional bounded measures.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Mario Alvarez-Picallo ◽  
Jean-Simon Pacaud Lemay

Cartesian differential categories are categories equipped with a differential combinator which axiomatizes the directional derivative. Important models of Cartesian differential categories include classical differential calculus of smooth functions and categorical models of the differential $\lambda$-calculus. However, Cartesian differential categories cannot account for other interesting notions of differentiation of a more discrete nature such as the calculus of finite differences. On the other hand, change action models have been shown to capture these examples as well as more "exotic" examples of differentiation. But change action models are very general and do not share the nice properties of Cartesian differential categories. In this paper, we introduce Cartesian difference categories as a bridge between Cartesian differential categories and change action models. We show that every Cartesian differential category is a Cartesian difference category, and how certain well-behaved change action models are Cartesian difference categories. In particular, Cartesian difference categories model both the differential calculus of smooth functions and the calculus of finite differences. Furthermore, every Cartesian difference category comes equipped with a tangent bundle monad whose Kleisli category is again a Cartesian difference category.


Author(s):  
Malek Abbasi ◽  
Michel Théra

AbstractIn this paper, we use a robust lower directional derivative and provide some sufficient conditions to ensure the strong regularity of a given mapping at a certain point. Then, we discuss the Hoffman estimation and achieve some results for the estimate of the distance to the set of solutions to a system of linear equalities. The advantage of our estimate is that it allows one to calculate the coefficient of the error bound.


Geophysics ◽  
2021 ◽  
pp. 1-62
Author(s):  
Shizhong Li ◽  
Chengyu Sun ◽  
Han Wu ◽  
Ruiqian Cai ◽  
Ning Xu

Frequency-domain finite-difference (FDFD) modeling plays an important role in exploration seismology. However, a major disadvantage of FDFD modeling is the computational cost, especially for large-scale models. By compactly distributing nonzero strips, the elongated stencil helps to generate a narrow-bandwidth impedance matrix, improving computational efficiency without sacrificing numerical accuracy. To further improve the accuracy and efficiency of modeling, we have developed an optimal FDFD method with an elongated stencil for 2D acoustic-wave modeling. The Laplacian term is approximated using the directional-derivative method and the average-derivative method. The dispersion analysis indicates that this elongated-stencil-based method (ESM) achieves higher accuracy than other finite-difference methods with the elongated stencil, and it is more suitable for large grid-spacing ratios. To keep the phase-velocity error within 1%, 15-point and 21-point schemes in the ESM only require approximately 2.28 and 2.19 grid points per wavelength, respectively, when the grid-spacing ratio, namely, the ratio of directional sampling intervals, is not less than 1.5. Moreover, we also adopt a variable-stencil-length scheme, in which the stencil length varies with the velocity, to further reduce the computational cost in frequency-domain modeling. Several numerical examples are presented to demonstrate the effectiveness of our ESM.


Author(s):  
Andreas Müller

The exponential and Cayley maps on SE(3) are the prevailing coordinate maps used in Lie group integration schemes for rigid body and flexible body systems. Such geometric integrators are the Munthe–Kaas and generalized- α schemes, which involve the differential and its directional derivative of the respective coordinate map. Relevant closed form expressions, which were reported over the last two decades, are scattered in the literature, and some are reported without proof. This paper provides a reference summarizing all relevant closed-form relations along with the relevant proofs, including the right-trivialized differential of the exponential and Cayley map and their directional derivatives (resembling the Hessian). The latter gives rise to an implicit generalized- α scheme for rigid/flexible multibody systems in terms of the Cayley map with improved computational efficiency.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1995
Author(s):  
Cristian Ghiu ◽  
Constantin Udriste ◽  
Lavinia Laura Petrescu

The multitemporal nonlinear Schrödinger PDE (with oblique derivative) was stated for the first time in our research group as a universal amplitude equation which can be derived via a multiple scaling analysis in order to describe slow modulations of the envelope of a spatially and temporarily oscillating wave packet in space and multitime (an equation which governs the dynamics of solitons through meta-materials). Now we exploit some hypotheses in order to find important explicit families of exact solutions in all dimensions for the multitime nonlinear Schrödinger PDE with a multitemporal directional derivative term. Using quite effective methods, we discovered families of ODEs and PDEs whose solutions generate solutions of multitime nonlinear Schrödinger PDE. Each new construction involves a relatively small amount of intermediate calculations.


Sign in / Sign up

Export Citation Format

Share Document