Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

2015 ◽  
Vol 22 (10) ◽  
pp. 102309 ◽  
Author(s):  
T. Drouot ◽  
E. Gravier ◽  
T. Reveille ◽  
M. Collard
2014 ◽  
Vol 21 (5) ◽  
pp. 052306 ◽  
Author(s):  
Y. Asahi ◽  
A. Ishizawa ◽  
T.-H. Watanabe ◽  
H. Tsutsui ◽  
S. Tsuji-Iio

1996 ◽  
Vol 3 (11) ◽  
pp. 4018-4022 ◽  
Author(s):  
M. A. Beer ◽  
G. W. Hammett

2015 ◽  
Vol 22 (8) ◽  
pp. 082302 ◽  
Author(s):  
T. Drouot ◽  
E. Gravier ◽  
T. Reveille ◽  
M. Sarrat ◽  
M. Collard ◽  
...  

2009 ◽  
Vol 16 (5) ◽  
pp. 055906 ◽  
Author(s):  
D. R. Ernst ◽  
J. Lang ◽  
W. M. Nevins ◽  
M. Hoffman ◽  
Y. Chen ◽  
...  

2008 ◽  
Vol 15 (5) ◽  
pp. 055907 ◽  
Author(s):  
Jianying Lang ◽  
Scott E. Parker ◽  
Yang Chen

1974 ◽  
Author(s):  
W. Jr. Horton ◽  
D. W. Ross ◽  
W. M. Tang ◽  
H. L. Berk ◽  
E. A. Frieman ◽  
...  

2020 ◽  
Vol 86 (4) ◽  
Author(s):  
G. G. Plunk

A fluid system is derived to describe electrostatic magnetized plasma turbulence at scales somewhat larger than the Larmor radius of a given species. It is related to the Hasegawa–Mima equation, but does not conserve enstrophy, and, as a result, exhibits a forward cascade of energy, to small scales. The inertial-range energy spectrum is argued to be shallower than a $-11/3$ power law, as compared to the $-5$ law of the Hasegawa–Mima enstrophy cascade. This property, confirmed here by direct numerical simulations of the fluid system, may help explain the fluctuation spectrum observed in gyrokinetic simulations of streamer-dominated electron-temperature-gradient driven turbulence (Plunk et al., Phys. Rev. Lett., vol. 122, 2019, 035002), and also possibly some cases of ion-temperature-gradient driven turbulence where zonal flows are suppressed (Plunk et al., Phys. Rev. Lett., vol. 118, 2017, 105002).


Sign in / Sign up

Export Citation Format

Share Document