Temperature Gradient
Recently Published Documents





Yihao Duan ◽  
Yong Xiao ◽  
Zhihong Lin

Abstract Gyro-average is a crucial operation to capture the essential finite Larmor radius effect (FLR) in gyrokinetic simulation. In order to simulate strongly shaped plasmas, an innovative multi-point average method based on non-orthogonal coordinates has been developed to improve the accuracy of the original multi-point average method in gyrokinetic particle simulation. This new gyro-average method has been implemented in the gyrokinetic toroidal code (GTC). Benchmarks have been carried out to prove the accuracy of this new method. In the limit of concircular tokamak, ion temperature gradient (ITG) instability is accurately recovered for this new method and consistency is achieved. The new gyro-average method is also used to solve the gyrokinetic Poisson equation, and its correctness has been confirmed in the long wavelength limit for realistic shaped plasmas. The improved GTC code with the new gyro-average method has been used to investigate the ITG instability with EAST magnetic geometry. The simulation results show that the correction induced by this new method in the linear growth rate is more significant for short wavelength modes where the finite Larmor radius (FLR) effect becomes important. Due to its simplicity and accuracy, this new gyro-average method can find broader applications in simulating the shaped plasmas in realistic tokamaks.

2022 ◽  
Vol 9 (1) ◽  
Tongya Liu ◽  
Hsien-Wang Ou ◽  
Xiaohui Liu ◽  
Yu-Kun Qian ◽  
Dake Chen

AbstractA series of numerical simulations with different forcing conditions are carried out, to investigate the roles played by buoyancy and wind forcing on the upper ocean gyres, and to contrast the laminar and eddying regimes. Model experiments show that the buoyancy-driven eastward geostrophic flow tends to suppress the formation of the wind-driven subpolar gyre, but the northward eddy heat transport can homogenize the subpolar water and reduce the meridional temperature gradient by about two-third, thus counteracting the buoyancy effect and saving the subpolar gyre. For the subtropical gyre, its transport is enhanced by eddy mixing, and the role of buoyancy forcing is very sensitive to the choice of diapycnal diffusivity. Our results suggest that eddy effects must be considered in the dynamics of the subpolar gyre, and vertical diffusivity should be selected carefully in simulating the basin-wide circulations.

2022 ◽  
Vol 327 ◽  
pp. 82-97
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.

2022 ◽  
Bingkun Huang ◽  
Shimi Yang ◽  
Jun Wang ◽  
Peter D Lund

Abstract The shape of container influences natural convection inside a latent heat storage with a phase change material (PCM). Often the geometrical design of a PCM container is based on empirical observations. To enhance convection and melting of the PCM, authors propose here new design guidelines for an improved container. Using the so-called Co-factor method as the optimized basis, which is defined as the vector product of the velocity and temperature gradient, the new design method strives to raise the velocity of natural convection in liquid PCM, increase the amount of PCM in the direction of the convective flow, and reduce the amount of PCM far from the heating surface. Following these guidelines and Co factor, an optimized PCM container with an elongated and curved shape is proposed and compared to a rectangular container. Numerical simulations indicated that the total melting time of the PCM in the optimized container could be reduced by more than 20% compared to the rectangular one. The higher natural convection velocity and the better use of it to melt the PCM in the optimized container space attributed to the better performance than that in rectangular container. The results can be used to design more effective PCM storage systems.

2022 ◽  
Jiyong Hwang ◽  
Kwangsu Choi ◽  
Sang Min Lee ◽  
Hyo Yun Jung

Abstract The microstructural and mechanical evaluation of 9% Ni steel with Flux-Cored Arc Welding was performed with two different Ni-based weld metals: Inconel 625 and Hastelloy 609. Weld metals showed the microstructural change depending on the temperature gradient and crystal growth rate for each region during the cooling after welding. At the bottom of the weld metal, which is rapidly cooled in contact with the cold base metal, a cellular/planar growth was exhibited due to a large temperature gradient and low crystal growth rate. While, columnar dendrites were exhibited in the central region cooled relatively slowly and precipitates were observed in the interdendritic region. In the low-temperature toughness test, the absorbed impact energies were 89 and 55 J for Inconel 625 and Hastelloy 609, respectively. When Inconel 625 is used as the weld metal compared to Hastelloy 609, the high content of the γ stabilizer and martensite start temperature decreasing elements leads to the formation of a thicker γ-phase layer and thinner martensite layer in the transition region. In addition, high content of these elements suppresses the martensite transformation and maintains the stability of the weld joint interface even at low temperatures, resulting in the higher absorbed impact energy.

2022 ◽  
Hui Li ◽  
Jiquan Li ◽  
Yan-Lin Fu ◽  
Zheng-Xiong Wang ◽  
Min Jiang

Abstract Two reduced simulation approaches are exploited to predict the parametric boundary of dominant instability regime with global effects and the characteristics of corresponding turbulent particle fluxes in tokamak plasmas. One is usual numerical simulation of coexisting ion temperature gradient (ITG) mode and trapped electron mode (TEM) turbulence employing an extended fluid code (ExFC) based on the so-called Landau-Fluid model including the trapped electron dynamics. Here the density gradient (i.e. R/Ln) driven TEM (∇n-TEM) is emphasized. The other one is a surrogate turbulence transport model, taking a neural network (NN) based approach with speeding calculation. It is shown that the turbulent particle flux, particularly their directions depend on the type of micro-instability as ITG and/or TEM. On the other hand, the density gradient may govern the direction of the turbulent particle fluxes in general circumstances. Specifically, in the parameter regime explored here, the ITG and the electron temperature gradient driven TEM (∇Te-TEM) are destabilized for flat density profile, generally causing an inward particle flux, i.e., particle pinch. Contrarily, for steep density profile, the ∇n-TEM or coexisting ITG and TEM turbulence are dominant so that the particle always diffuses outwards. An empirical criterion is obtained to predict the dominant instability and the direction of particle flux for medium density gradients, involving the gradients of both ion and electron temperature as well as the density. These two transport models are applied to analyze the spontaneous excitation of a quasi-coherent mode (QCM) in the turbulence modulation discharge by MHD magnetic island observed on tokamak HL-2A, clearly showing a dynamic transition from ITG to TEM. Furthermore, the ExFC-NN model can predict and speed up the analysis of the turbulence transport in tokamak experiments.

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Jian Chen ◽  
Hailang Liu ◽  
Zhiguo Peng ◽  
Jie Tang

To better control the Inconel617 electron beam cladding solidification process, a three-dimensional temperature field model was built to simulate the temperature gradient, cooling rate, and solidification rate in the solidification process and take a deep dive into the solidification behavior, as well as the calculation of the solidification characteristic parameters at the edge of the molten pool and then predict the solidification tissue structure. The study shows that the largest temperature gradient occurred in the material thickness direction. The self-cooling effect of the material dominated the solidification of the alloy layer; the cooling rate depended on the high-temperature thermal conductivity of the material and the self-cooling effect of the matrix, and the maximum cooling rate in the bonding zone was 1380 °C/s. The steady-state solidification rate was equal to the moving speed of the heat source; the solidification characteristics of the solidification process at the edge of the molten pool increased with the distance from the surface: the cooling rate decreased from 1421.61 to 623 °C/s, the temperature gradient increased from 0.0723 × 106 to 0.417 × 106, and the solidification rate decreased from 0.01 to 0 m/s. The prediction was made that the small and thin equiaxed crystals are on the top, a thin and short dendritic transition structure in the middle, and relatively coarse dendrites at the bottom. Experiments confirmed that the solidification tissue structure is basically consistent with the simulation law.

Sign in / Sign up

Export Citation Format

Share Document