zonal flows
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 66)

H-INDEX

47
(FIVE YEARS 3)

2022 ◽  
Vol 17 (01) ◽  
pp. C01023
Author(s):  
A.Y. Yashin ◽  
V.V. Bulanin ◽  
V.K. Gusev ◽  
V.B. Minaev ◽  
A.V. Petrov ◽  
...  

Abstract Doppler backscattering (DBS) was successfully previously used on the Globus-M tokamak. The diagnostic was utilised in the form of either a single-frequency or a four-frequency dual homodyne system. It was used primarily for the study of zonal flows, filaments and Alfvén eigenmodes. These phenomena are worth being studied both on the periphery and in the core region of the plasma in a tokamak. For this specific reason two multifrequency DBS systems were installed on the upgraded Globus-M2 tokamak. The first four-frequency system with dual homodyne detection had already been used on the Globus-M tokamak and has lower probing frequencies which provide measurements from the periphery plasma. The second and new six-frequency DBS system was installed with a non-linear transmission line that was adapted to generate probing signals at frequencies 50, 55, 60, 65, 70 and 75 GHz. In general, the range of probing frequencies corresponds to the region of critical plasma densities from 5 × 1018 to 7 × 1019 m−3 at normal incidence. The pyramidal horn antennas are located inside the vacuum vessel with a special cardan-like rotator outside the camera so as to tilt antennas in the toroidal and poloidal directions. A previously developed code was applied to simulate 3D raytracing for all frequency channels. Calculations were carried out for different angles of incidence and for different electron density distributions in order to investigate the possibilities of the implementation of radial and poloidal correlation Doppler reflectometry. Examples of the DBS system application for study of plasma properties in the Globus-M2 tokamak are presented.


2022 ◽  
Vol 924 (1) ◽  
pp. 3
Author(s):  
Ziyan Xu ◽  
Xue-Ning Bai

Abstract Planetesimal formation is a crucial yet poorly understood process in planet formation. It is widely believed that planetesimal formation is the outcome of dust clumping by the streaming instability (SI). However, recent analytical and numerical studies have shown that the SI can be damped or suppressed by external turbulence, and at least the outer regions of protoplanetary disks are likely weakly turbulent due to magneto-rotational instability (MRI). We conduct high-resolution local shearing-box simulations of hybrid particle-gas magnetohydrodynamics (MHD), incorporating ambipolar diffusion as the dominant nonideal MHD effect, applicable to outer disk regions. We first show that dust backreaction enhances dust settling toward the midplane by reducing turbulence correlation time. Under modest level of MRI turbulence, we find that dust clumping is in fact easier than the conventional SI case, in the sense that the threshold of solid abundance for clumping is lower. The key to dust clumping includes dust backreaction and the presence of local pressure maxima, which in our work is formed by the MRI zonal flows overcoming background pressure gradient. Overall, our results support planetesimal formation in the MRI-turbulent outer protoplanetary disks, especially in ring-like substructures.


2021 ◽  
Author(s):  
V I Ilgisonis ◽  
Vladimir P Lakhin ◽  
Nikita Marusov ◽  
Andrei I Smolyakov ◽  
Ekaterina Sorokina

Abstract The nonlocal eigenmode analysis of low-frequency zonal flows in toroidally rotating tokamak plasmas is performed in the framework of the reduced one-fluid ideal MHD-model. It is shown that for typical profiles of plasma parameters toroidal plasma rotation results in the global zonal flow formation on the periphery of plasma column. For some types of equilibria these zonal flows are aperiodically unstable that leads to the excitation of the differential plasma rotation at the tokamak plasma edge.


Author(s):  
Jonathan Skipp ◽  
Sergey Nazarenko

Abstract We study the thermodynamic equilibrium spectra of the Charney- Hasegawa-Mima (CHM) equation in its weakly nonlinear limit. In this limit, the equation has three adiabatic invariants, in contrast to the two invariants of the 2D Euler or Gross-Pitaevskii equations, which are examples for comparison. We explore how the third invariant considerably enriches the variety of equilibrium spectra that the CHM system can access. In particular we characterise the singular limits of these spectra in which condensates occur, i.e. a single Fourier mode (or pair of modes) accumulate(s) a macroscopic fraction of the total invariants. We show that these equilibrium condensates provide a simple explanation for the characteristic structures observed in CHM systems of finite size: highly anisotropic zonal flows, large-scale isotropic vortices, and vortices at small scale. We show how these condensates are associated with combinations of negative thermodynamic potentials (e.g. temperature).


2021 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

Abstract. Detecting trends in regional large-scale circulation (LSC) is an important challenge as LSC is a key driver of local weather conditions. In this work, we investigate the past evolution of Western Europe LSC based on the 500 hPa geopotential height fields from 20CRv2c (1851–2010), ERA20C (1900–2010) and ERA5 (1950–2010) reanalyses. We focus on the evolution of large-scale circulation characteristics using three atmospheric descriptors that are based on analogy – characterizing the geopotential shape stationarity and how well a geopotential shape is reproduced in the climatology – together with a non-analogy descriptor accounting for the intensity of the centers of action. These descriptors were shown relevant to study precipitation extremes and variability in the Northwestern Alps in previous studies. Even though LSC characteristics and trends are consistent among the three reanalyses after 1950, we find major differences between 20CRv2c and ERA20C from 1900 to 1950 in accordance with previous studies. Notably, ERA20C produces flatter geopotential shapes in the beginning of the 20th century and shows a reinforcement of the meridional pressure gradient that is not observed in 20CRv2c. We then focus on the recent changes in LSC from 1950 to 2019 using ERA5. We combine the four atmospheric descriptors with an existing weather pattern classification to study the recent changes in the main atmospheric influences over France and Western Europe (Atlantic, Mediterranean, Northeast, Anticyclonic). We show that little changes are found in Northeast circulations. However, we show that Atlantic circulations (zonal flows) tend to become more similar to known Atlantic circulations in winter. Anticyclonic conditions tend to become more stationary in summer – a change that can potentially affect summer heatwaves. Furthermore, Mediterranean circulations tend to become more stationary, more similar to known Mediterranean circulations and associated with stronger centers of action in autumn, which could have implications for autumn extreme precipitation in the Mediterranean-influenced regions of the Southwestern Alps.


Author(s):  
Vladimir G. Gnevyshev ◽  
Sergei I. Badulin ◽  
Aleksey V. Koldunov ◽  
Tatyana V. Belonenko
Keyword(s):  

2021 ◽  
Vol 28 (5) ◽  
pp. 052502
Author(s):  
T. Ullmann ◽  
B. Schmid ◽  
P. Manz ◽  
G. E. M. Tovar ◽  
M. Ramisch

Sign in / Sign up

Export Citation Format

Share Document