A cylindrically symmetric magnetic trap for compact Bose-Einstein condensate atom interferometer gyroscopes

2017 ◽  
Vol 88 (1) ◽  
pp. 013102 ◽  
Author(s):  
R. A. Horne ◽  
C. A. Sackett
1997 ◽  
Vol 55 (1) ◽  
pp. 488-497 ◽  
Author(s):  
A. B. Kuklov ◽  
N. Chencinski ◽  
A. M. Levine ◽  
W. M. Schreiber ◽  
Joseph L. Birman

1996 ◽  
Vol 77 (6) ◽  
pp. 988-991 ◽  
Author(s):  
M.-O. Mewes ◽  
M. R. Andrews ◽  
N. J. van Druten ◽  
D. M. Kurn ◽  
D. S. Durfee ◽  
...  

1997 ◽  
Vol 55 (5) ◽  
pp. R3307-R3310 ◽  
Author(s):  
A. B. Kuklov ◽  
N. Chencinski ◽  
A. M. Levine ◽  
W. M. Schreiber ◽  
Joseph L. Birman

Particles ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Brent Harrison ◽  
Andre Peshier

We present a novel numerical scheme to solve the QCD Boltzmann equation in the soft scattering approximation, for the quenched limit of QCD. Using this we can readily investigate the evolution of spatially homogeneous systems of gluons distributed isotropically in momentum space. We numerically confirm that for so-called “overpopulated” initial conditions, a (transient) Bose-Einstein condensate could emerge in a finite time. Going beyond existing results, we analyze the formation dynamics of this condensate. The scheme is extended to systems with cylindrically symmetric momentum distributions, in order to investigate the effects of anisotropy. In particular, we compare the rates at which isotropization and equilibration occur. We also compare our results from the soft scattering scheme to the relaxation time approximation.


Sign in / Sign up

Export Citation Format

Share Document