A numerical study of slope and fuel structure effects on coupled wildfire behaviour

2010 ◽  
Vol 19 (2) ◽  
pp. 179 ◽  
Author(s):  
Rodman R. Linn ◽  
Judith L. Winterkamp ◽  
David R. Weise ◽  
Carleton Edminster

Slope and fuel structure are commonly accepted as major factors affecting the way wildfires behave. However, it is possible that slope affects fire differently depending on the fuel bed. Six FIRETEC simulations using three different fuel beds on flat and upslope topography were used to examine this possibility. Fuel beds resembling grass, chaparral, and ponderosa pine forests were created in such a way that there were two specific locations with identical local fuel beds located around them. These fuel beds were each used for a flat-terrain simulation and an idealised-hill simulation in order to isolate the impacts of the topography without the complications of having different local fuels. In these simulations, fuel bed characteristics have a significant effect on the spread rate and perimeter shape of the fires on both flat ground and on the idealised smooth hill topography. The analysis showed that these simulated fires evolved as they travelled between the locations even on flat ground, and the accelerations and decelerations that affect the fire occurred at different times and at different rates depending on the fuel bed. The results of these simulations and analyses indicate that though some general principles are true for all fuel beds, there are differences in the way that fires react to non-homogeneous topographies depending on the fuel bed.

1978 ◽  
Vol 31 (1) ◽  
pp. 9 ◽  
Author(s):  
Warren P. Clary ◽  
Peter F. Ffolliott ◽  
Frederic R. Larson

Nature ◽  
2004 ◽  
Vol 432 (7013) ◽  
pp. 87-90 ◽  
Author(s):  
Jennifer L. Pierce ◽  
Grant A. Meyer ◽  
A. J. Timothy Jull

2004 ◽  
Vol 116 (3) ◽  
pp. 246-251 ◽  
Author(s):  
HEATHER M. SWANSON ◽  
BREANNA KINNEY ◽  
ALEXANDER CRUZ

2019 ◽  
Vol 450 ◽  
pp. 117502 ◽  
Author(s):  
Jose M. Iniguez ◽  
James F. Fowler ◽  
W. Keith Moser ◽  
Carolyn H. Sieg ◽  
L. Scott Baggett ◽  
...  

2010 ◽  
Vol 25 (3) ◽  
pp. 112-119 ◽  
Author(s):  
Daniel Tinker ◽  
Gail K. Stakes ◽  
Richard M. Arcano

Abstract Temperate forest ecosystems continue to play an important role in the global carbon cycle, and the ability to accurately quantify carbon storage and allocation remains a critical tool for managers and researchers. This study was aimed at developing new allometric equations for predicting above- and belowground biomass of both mature trees and saplings of ponderosa pine trees in the Black Hills region of the western United States and at evaluating thinning effects on biomass pools and aboveground productivity. Study sites included three stands that had been commercially thinned and one unmanaged stand. Nine allometric equations were developed for mature trees, and six equations were developed for saplings; all models exhibited strong predictive power. The unmanaged stand contained more than twice as much total aboveground biomass as any of the thinned stands. Aboveground biomass allocation among tree compartments was similar among the three older stands but quite different from the young, even-aged stand. Stand-level aboveground net primary production was higher in the unmanaged and intensively managed stands, yet tree-level annual productivity was much lower in the unmanaged stands than in any of the managed forests, suggesting that thinning of some forest stands may increase their ability to sequester and store carbon. Our data also suggest that different management approaches did not have the same effect on carbon allocation as they did on total carbon storage capacity, but rather, stand age was the most important factor in predicting carbon allocation within individual trees and stands. Identification of the relationships between stand structure and forest management practices may help identify various management strategies that maximize rates of carbon storage in ponderosa pine forests.


Sign in / Sign up

Export Citation Format

Share Document