old growth
Recently Published Documents


TOTAL DOCUMENTS

2430
(FIVE YEARS 371)

H-INDEX

100
(FIVE YEARS 7)

Author(s):  
Melinda Gilhen-Baker ◽  
Valentina Roviello ◽  
Diana Beresford-Kroeger ◽  
Giovanni N. Roviello

AbstractOld forests containing ancient trees are essential ecosystems for life on earth. Mechanisms that happen both deep in the root systems and in the highest canopies ensure the viability of our planet. Old forests fix large quantities of atmospheric CO2, produce oxygen, create micro-climates and irreplaceable habitats, in sharp contrast to young forests and monoculture forests. The current intense logging activities induce rapid, adverse effects on our ecosystems and climate. Here we review large old trees with a focus on ecosystem preservation, climate issues, and therapeutic potential. We found that old forests continue to sequester carbon and fix nitrogen. Old trees control below-ground conditions that are essential for tree regeneration. Old forests create micro-climates that slow global warming and are irreplaceable habitats for many endangered species. Old trees produce phytochemicals with many biomedical properties. Old trees also host particular fungi with untapped medicinal potential, including the Agarikon, Fomitopsis officinalis, which is currently being tested against the coronavirus disease 2019 (COVID-19). Large old trees are an important part of our combined cultural heritage, providing people with aesthetic, symbolic, religious, and historical cues. Bringing their numerous environmental, oceanic, ecological, therapeutic, and socio-cultural benefits to the fore, and learning to appreciate old trees in a holistic manner could contribute to halting the worldwide decline of old-growth forests.


Author(s):  
Mahoko Noguchi ◽  
Kazuhiko Hoshizaki ◽  
Michinari Matsushita ◽  
Daiki Sugiura ◽  
Tsutomu Yagihashi ◽  
...  

AbstractAssessing long-term changes in the biomass of old-growth forests with consideration of climate effects is essential for understanding forest ecosystem functions under a changing climate. Long-term biomass changes are the result of accumulated short-term changes, which can be affected by endogenous processes such as gap filling in small-scale canopy openings. Here, we used 26 years (1993–2019) of repeated tree census data in an old-growth, cool-temperate, mixed deciduous forest that contains three topographic units (riparian, denuded slope, and terrace) in northern Japan to document decadal changes in aboveground biomass (AGB) and their processes in relation to endogenous processes and climatic factors. AGB increased steadily over the 26 years in all topographic units, but different tree species contributed to the increase among the topographic units. AGB gain within each topographic unit exceeded AGB loss via tree mortality in most of the measurement periods despite substantial temporal variation in AGB loss. At the local scale, variations in AGB gain were partially explained by compensating growth of trees around canopy gaps. Climate affected the local-scale AGB gain: the gain was larger in the measurement periods with higher mean air temperature during the current summer but smaller in those with higher mean air temperature during the previous autumn, synchronously in all topographic units. The influences of decadal summer and autumn warming on AGB growth appeared to be counteracting, suggesting that the observed steady AGB increase in KRRF is not fully explained by the warming. Future studies should consider global and regional environmental factors such as elevated CO2 concentrations and nitrogen deposition, and include cool-temperate forests with a broader temperature range to improve our understanding on biomass accumulation in this type of forests under climate change.


Author(s):  
Danaë M. A. Rozendaal ◽  
Daniela Requena Suarez ◽  
Veronique De Sy ◽  
Valerio Avitabile ◽  
Sarah Carter ◽  
...  

Abstract For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25,000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (≤20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0 to 7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1790
Author(s):  
Douglas Sheil ◽  
Manuel Boissière ◽  
Miriam van Heist ◽  
Ismail Rachman ◽  
Imam Basuki ◽  
...  

New Guinea is the world’s largest, most speciose, and most culturally rich tropical island, and the little-studied Mamberamo Basin of Papua (Indonesian New Guinea) is recognised among the region’s most-important areas for biological diversity. Here, we examined the floodplain forests in the indigenous territory of Papasena, within the Mamberamo-Foja Wildlife Reserve in the Mamberamo Basin. As part of a training activity with local researchers, students, and civil servants, and with the permission and assistance of the local people, we employed various methods including the field surveys detailed here. We used variable-area tree plots, transects for non-trees and soil sampling, and local informants to document 17 plots: four in old-growth dryland forest, five in old-growth swamp forests (two seasonally flooded and three permanently wet including one dominated by sago, Metroxylon sagu Rottb.), five in secondary forest (fallows), and three in gardens (two in swamps and one on dryland). In total, we measured 475 trees over 10 cm in diameter at 1.3 m (dbh). The swamp forests had high local basal areas (highest value 45.1 m2 ha−1) but relatively low statures (20 m but with emergent trees over 40 m). In total, 422 morphospecies from 247 genera and 89 different families were distinguished. These included 138 tree species and 284 non-tree plant species. A quarter (105) of the morphospecies lacked species-level identifications. The woody families Rubiaceae, Araceae, Moraceae, and Euphorbiaceae were especially diverse, with 20 or more morphospecies each. Tree richness was highest in dryland forest (plot 7 having 28 species in 40 stems over 10 cm dbh) with more variation in the flooded forests. Non-tree vegetation showed similar patterns ranging from 65 species in one 40-by-5 m primary forest plot to just 5 in one seasonally flooded forest plot. The local people identified many plants as useful. Among trees, at least 59 species were useful for construction (the most common use), while, for non-trees, medicinal uses were most frequent. Inceptisols dominated (12 plots), followed by Ultisols and Entisols (3 and 2 plots, respectively). Drainage appeared poor and nutrient availability low, while land-suitability criteria implied little potential for crops aside from sago. We discuss the implication of local practises and more recent developments that may threaten the conservation of these floodplain systems. We underline the key role of local people in the oversight and protection of these ecosystems.


Author(s):  
Oliver T. Coomes ◽  
Margaret Kalacska ◽  
Yoshito Takasaki ◽  
Christian Abizaid ◽  
Tristan Grupp

Abstract Recent studies point to a rapid increase in small-scale deforestation in Amazonia. Where people live along the rivers of the basin, customary shifting cultivation creates a zone of secondary forest, orchards and crop fields around communities in what was once was old-growth terra firme forest. Visible from satellite imagery as a narrow but extensive band of forest disturbance along rivers, this zone is often considered as having been deforested. In this paper we assess forest disturbance and the dynamics of secondary forests around 275 communities along a 725 km transect on the Napo and Amazon rivers in the Peruvian Amazon. We used high-resolution satellite imagery to define the ‘working area’ around each community, based on the spatial distribution of forest/field patches and the visible boundary between old-growth and secondary forests. Land cover change was assessed between ca. 1989 and 2015 using CLASliteTM image classification. Statistical analyses using community and household-level data from the Peruvian Amazon Rural Livelihoods and Poverty (PARLAP) Project identified the predictors of the extent of forest disturbance and the dynamics of secondary forests around communities. Although shifting cultivation is the primary driver of old-growth forest loss, we find that secondary forest cover which replaces old-growth forests is stable through time, and that both the area and rate of expansion into old-growth forests are modest when compared to forest conversion in Peru for colonization and plantation development. Our findings challenge the notion that smallholder agriculture along rivers is an important threat to terra firme forests in Amazonia and point to the importance of protecting forests on community lands from loggers, colonists and other outsiders.


2021 ◽  
Vol 3 (10) ◽  
pp. 46-53
Author(s):  
Alexander Yatsyna ◽  

As a result of the research, the species composition of lichens and closely related fungi of the oak forest of the reserve «Vydritsa» (Republic of Belarus, Gomel Region) has been revealed. An annotated list, including 113 species has been compiled, 106 of these species are lichens, 6 – non-lichenised saprobic and 1 – lichenicolous fungi. Species Calicium adspersum, Cetrelia olivetorum, Chaenotheca chlorella, Cladonia caespiticia, Lobaria pulmonaria and Parmotrema stuppeum are included in the Red Data Book of Belarus and are listed for the first time for the Svetlogorsk district and the reserve «Vydritsa». The indicator lichens of old-growth oak forests include 20 species; 28 species were recorded in all 12 surveyed localities.


Sign in / Sign up

Export Citation Format

Share Document