scholarly journals Functional Consequences of Mutations of Conserved, Polar Amino Acids in Transmembrane Sequences of the Ca2+Release Channel (Ryanodine Receptor) of Rabbit Skeletal Muscle Sarcoplasmic Reticulum

1998 ◽  
Vol 273 (48) ◽  
pp. 31867-31872 ◽  
Author(s):  
Guo Guang Du ◽  
David H. MacLennan
1988 ◽  
Vol 92 (1) ◽  
pp. 1-26 ◽  
Author(s):  
J S Smith ◽  
T Imagawa ◽  
J Ma ◽  
M Fill ◽  
K P Campbell ◽  
...  

The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine.


1999 ◽  
Vol 90 (3) ◽  
pp. 835-843 ◽  
Author(s):  
Hirochika Komai ◽  
Andrew J. Lokuta

Background Although various local anesthetics can cause histologic damage to skeletal muscle when injected intramuscularly, bupivacaine appears to have an exceptionally high rate of myotoxicity. Research has suggested that an effect of bupivacaine on sarcoplasmic reticulum Ca2+ release is involved in its myotoxicity, but direct evidence is lacking. Furthermore, it is not known whether the toxicity depends on the unique chemical characteristics of bupivacaine and whether the toxicity is found only in skeletal muscle. Methods The authors studied the effects of bupivacaine and the similarly lipid-soluble local anesthetic, tetracaine, on the Ca2+ release channel-ryanodine receptor of sarcoplasmic reticulum in swine skeletal and cardiac muscle. [3H]Ryanodine binding was used to measure the activity of the Ca2+ release channel-ryanodine receptors in microsomes of both muscles. Results Bupivacaine enhanced (by two times at 5 mM) and inhibited (66% inhibition at 10 mM) [3H]ryanodine binding to skeletal muscle microsomes. In contrast, only inhibitory effects were observed with cardiac microsomes (about 3 mM for half-maximal inhibition). Tetracaine, which inhibits [3H]ryanodine binding to skeletal muscle microsomes, also inhibited [3H]ryanodine binding to cardiac muscle microsomes (half-maximal inhibition at 99 microM). Conclusions Bupivacaine's ability to enhance Ca2+ release channel-ryanodine receptor activity of skeletal muscle sarcoplasmic reticulum most likely contributes to the myotoxicity of this local anesthetic. Thus, the pronounced myotoxicity of bupivacaine may be the result of this specific effect on Ca2+ release channel-ryanodine receptor superimposed on a nonspecific action on lipid bilayers to increase the Ca2+ permeability of sarcoplasmic reticulum membranes, an effect shared by all local anesthetics. The specific action of tetracaine to inhibit Ca2+ release channel-ryanodine receptor activity may in part counterbalance the nonspecific action, resulting in moderate myotoxicity.


1995 ◽  
Vol 270 (50) ◽  
pp. 29644-29647 ◽  
Author(s):  
Jonathan J. Abramson ◽  
Anthony C. Zable ◽  
Terence G. Favero ◽  
Guy Salama

2002 ◽  
Vol 367 (2) ◽  
pp. 423-431 ◽  
Author(s):  
Martin HOHENEGGER ◽  
Josef SUKO ◽  
Regina GSCHEIDLINGER ◽  
Helmut DROBNY ◽  
Andreas ZIDAR

Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca2+-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca2+-release from intracellular Ca2+ stores can be triggered by diffusible second messengers like InsP3, cyclic ADP-ribose or nicotinic acid—adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca2+-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca2+-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca2+-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC5030nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel.


Sign in / Sign up

Export Citation Format

Share Document