reversal potential
Recently Published Documents


TOTAL DOCUMENTS

881
(FIVE YEARS 60)

H-INDEX

86
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Pratima Pandey ◽  
Rajashree Sahoo ◽  
Khusbu Singh ◽  
Sanghamitra Pati ◽  
Jose Mathew ◽  
...  

Bacteria employ numerous resistance mechanisms against structurally distinct drugs by the process of multidrug resistance. A study was planned to discover the antibacterial potential of a graphene oxide nanosheet (GO), a graphene oxide–zinc oxide nanocomposite (GO/ZnO), a graphene oxide-chitosan nanocomposite (GO–CS), a zinc oxide decorated graphene oxide–chitosan nanocomposite (GO–CS/ZnO), and zinc oxide nanoparticles (ZnO) alone and in a blend with antibiotics against a PS-2 isolate of Pseudomonas aeruginosa. These nanocomposites reduced the MIC of tetracycline (TET) from 16 folds to 64 folds against a multidrug-resistant clinical isolate. Efflux pumps were interfered, as evident by an ethidium bromide synergy study with nanocomposites, as well as inhibiting biofilm synthesis. These nanoparticles/nanocomposites also decreased the mutant prevention concentration (MPC) of TET. To the best of our knowledge, this is the first report on nanomaterials as a synergistic agent via inhibition of efflux and biofilm synthesis.


2021 ◽  
Author(s):  
Aghil Abed Zadeh ◽  
Brandon David Turner ◽  
Nicole Calakos ◽  
Nicolas Brunel

GABA is canonically known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyper-polarizing membrane potential. However, GABAergic currents can also exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that the relationship between GABAergic synaptic conductance and output firing rate exhibits three qualitatively different regimes as a function of GABA reversal potential, νGABA: monotonically decreasing for sufficiently low νGABA (inhibitory), monotonically increasing for νGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of νGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of νGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.


2021 ◽  
Author(s):  
Christopher Brian Currin ◽  
Joseph Valentino Raimondo

AbstractMany neurons in the mammalian central nervous system have complex dendritic arborisations and active dendritic conductances that enable these cells to perform sophisticated computations. How dendritically targeted inhibition affects local dendritic excitability is not fully understood. Here we use computational models of branched dendrites to investigate where GABAergic synapses should be placed to minimise dendritic excitability over time. To do so, we formulate a metric we term the “Inhibitory Level” (IL), which quantifies the effectiveness of synaptic inhibition for reducing the depolarising effect of nearby excitatory input. GABAergic synaptic inhibition is dependent on the reversal potential for GABAA receptors (EGABA), which is primarily set by the transmembrane chloride ion (Cl-) concentration gradient. We, therefore, investigated how variable EGABA and dynamic chloride affects dendritic inhibition. We found that the inhibitory effectiveness of dendritic GABAergic synapses accumulates at an encircled branch junction. The extent of inhibitory accumulation is dependent on the number of branches and location of synapses but is independent of EGABA. This accumulation occurs even for very distally placed inhibitory synapses when they are hyperpolarising – but not when they are shunting. When accounting for Cl- fluxes and dynamics in Cl- concentration, we observed that Cl- loading is detrimental to inhibitory effectiveness. This enabled us to determine the most inhibitory distribution of GABAergic synapses which is close to – but not at – a shared branch junction. This distribution balances a trade-off between a stronger combined inhibitory influence when synapses closely encircle a branch junction with the deleterious effects of increased Cl- loading that occurs when inhibitory synapses are co-located.


2021 ◽  
Vol 118 (49) ◽  
pp. e2106459118
Author(s):  
Bingxue Li ◽  
Songling Li ◽  
Honglan Zheng ◽  
Zhiqiang Yan

Auditory transduction is mediated by chordotonal (Cho) neurons in Drosophila larvae, but the molecular identity of the mechanotransduction (MET) channel is elusive. Here, we established a whole-cell recording system of Cho neurons and showed that two transient receptor potential vanilloid (TRPV) channels, Nanchung (NAN) and Inactive (IAV), are essential for MET currents in Cho neurons. NAN and IAV form active ion channels when expressed simultaneously in S2 cells. Point mutations in the pore region of NAN-IAV change the reversal potential of the MET currents. Particularly, residues 857 through 990 in the IAV carboxyl terminus regulate the kinetics of MET currents in Cho neurons. In addition, TRPN channel NompC contributes to the adaptation of auditory transduction currents independent of its ion-conduction function. These results indicate that NAN-IAV, rather than NompC, functions as essential pore-forming subunits of the native auditory transduction channel in Drosophila and provide insights into the gating mechanism of MET currents in Cho neurons.


2021 ◽  
Vol 14 ◽  
Author(s):  
Werner Kilb

The membrane responses upon activation of GABA(A) receptors critically depend on the intracellular Cl− concentration ([Cl−]i), which is maintained by a set of transmembrane transporters for Cl−. During neuronal development, but also under several pathophysiological conditions, the prevailing expression of the Cl− loader NKCC1 and the low expression of the Cl− extruder KCC2 causes elevated [Cl−]i, which result in depolarizing GABAergic membrane responses. However, depolarizing GABAergic responses are not necessarily excitatory, as GABA(A) receptors also reduces the input resistance of neurons and thereby shunt excitatory inputs. To summarize our knowledge on the effect of depolarizing GABA responses on neuronal excitability, this review discusses theoretical considerations and experimental studies illustrating the relation between GABA conductances, GABA reversal potential and neuronal excitability. In addition, evidences for the complex spatiotemporal interaction between depolarizing GABAergic and glutamatergic inputs are described. Moreover, mechanisms that influence [Cl−]i beyond the expression of Cl− transporters are presented. And finally, several in vitro and in vivo studies that directly investigated whether GABA mediates excitation or inhibition during early developmental stages are summarized. In summary, these theoretical considerations and experimental evidences suggest that GABA can act as inhibitory neurotransmitter even under conditions that maintain substantial depolarizing membrane responses.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009199
Author(s):  
Aniello Lombardi ◽  
Heiko J. Luhmann ◽  
Werner Kilb

GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs. These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michele Yeo ◽  
Yong Chen ◽  
Changyu Jiang ◽  
Gang Chen ◽  
Kaiyuan Wang ◽  
...  

AbstractInhibitory GABA-ergic neurotransmission is fundamental for the adult vertebrate central nervous system and requires low chloride concentration in neurons, maintained by KCC2, a neuroprotective ion transporter that extrudes intracellular neuronal chloride. To identify Kcc2 gene expression‑enhancing compounds, we screened 1057 cell growth-regulating compounds in cultured primary cortical neurons. We identified kenpaullone (KP), which enhanced Kcc2/KCC2 expression and function in cultured rodent and human neurons by inhibiting GSK3ß. KP effectively reduced pathologic pain-like behavior in mouse models of nerve injury and bone cancer. In a nerve-injury pain model, KP restored Kcc2 expression and GABA-evoked chloride reversal potential in the spinal cord dorsal horn. Delta-catenin, a phosphorylation-target of GSK3ß in neurons, activated the Kcc2 promoter via KAISO transcription factor. Transient spinal over-expression of delta-catenin mimicked KP analgesia. Our findings of a newly repurposed compound and a novel, genetically-encoded mechanism that each enhance Kcc2 gene expression enable us to re-normalize disrupted inhibitory neurotransmission through genetic re-programming.


2021 ◽  
Vol 142 ◽  
pp. 112084
Author(s):  
Gaurav Raj Dwivedi ◽  
Reeta Rai ◽  
Ramendra Pratap ◽  
Khusbu Singh ◽  
Sanghamitra Pati ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Yasmine Belaïdouni ◽  
Diabe Diabira ◽  
Jinwei Zhang ◽  
Jean-Charles Graziano ◽  
Francesca Bader ◽  
...  

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. Mouse models of RTT show reduced expression of the cation-chloride cotransporter KCC2 and altered chloride homeostasis at presymptomatic stages. However, whether these alterations persist to late symptomatic stages has not been studied. Here we assess KCC2 and NKCC1 expressions and chloride homeostasis in the hippocampus of early [postnatal (P) day 30–35] and late (P50–60) symptomatic male Mecp2-null (Mecp2–/y) mice. We found (i) no difference in the relative amount, but an over-phosphorylation, of KCC2 and NKCC1 between wild-type (WT) and Mecp2–/y hippocampi and (ii) no difference in the inhibitory strength, nor reversal potential, of GABAA-receptor-mediated responses in Mecp2–/y CA3 pyramidal neurons compared to WT at any stages studied. Altogether, these data indicate the presence of a functional chloride extrusion mechanism in Mecp2–/y CA3 pyramidal neurons at symptomatic stages.


2021 ◽  
Author(s):  
Anna Katharina Eick ◽  
Maite Ogueta ◽  
Edgar Buhl ◽  
James J. L. Hodge ◽  
Ralf Stanewsky

AbstractCation Chloride Cotransporters (CCC’s) regulate intracellular chloride ion concentration ([Cl−]i) within neurons, which can reverse the direction of the neuronal response to the neurotransmitter GABA. Na+ K+ Cl− (NKCC) and K+ Cl− (KCC) cotransporters transport Cl− into or out of the cell, respectively. When NKCC activity dominates, the resulting high [Cl−]i can lead to an excitatory and depolarizing response of the neuron upon GABAA receptor opening, while KCC dominance has the opposite effect. This inhibitory-to-excitatory GABA switch has been linked to seasonal adaption of circadian clock function to changing day length, and its dysregulation is associated with neurodevelopmental disorders such as epilepsy. Constant light normally disrupts circadian clock function and leads to arrhythmic behavior. Here, we demonstrate a function for KCC in regulating Drosophila locomotor activity and GABA responses in circadian clock neurons because alteration of KCC expression in circadian clock neurons elicits rhythmic behavior in constant light. We observed the same effects after downregulation of the Wnk and Fray kinases, which modulate CCC activity in a [Cl−]i-dependent manner. Patch-clamp recordings from clock neurons show that downregulation of KCC results in a more positive GABA reversal potential, while KCC overexpression has the opposite effect. Finally, KCC downregulation represses morning behavioral activity during long photoperiods, while downregulation of NKCC promotes morning activity. In summary, our results support a model in which the regulation of [Cl−]i by a KCC/NKCC/Wnk/Fray feedback loop determines the response of clock neurons to GABA, which is important for adjusting behavioral activity to constant light and long-day conditions.


Sign in / Sign up

Export Citation Format

Share Document