ryanodine receptor
Recently Published Documents


TOTAL DOCUMENTS

2669
(FIVE YEARS 262)

H-INDEX

122
(FIVE YEARS 9)

2022 ◽  
Vol 157 (1) ◽  
pp. 15-22
Author(s):  
Toshiko Yamazawa ◽  
Takuya Kobayashi ◽  
Nagomi Kurebayashi ◽  
Takashi Murayama

2021 ◽  
Author(s):  
Daniela Rossi ◽  
Stefania Lorenzini ◽  
Enrico Pierantozzi ◽  
Filip Van Petegem ◽  
David Osamwonuyi Amadsun ◽  
...  

Junctin is a transmembrane protein of striated muscles, localized at the junctional sarcoplasmic reticulum (j-SR). It is characterized by a luminal C-terminal tail, through which it functionally interacts with calsequestrin and the ryanodine receptor. Interaction with calsequestrin was ascribed to the presence of stretches of charged amino acids. However, the regions able to bind calsequestrin have not been defined in detail. We report here that, in non-muscle cells, junctin and calsequestrin assemble in long linear regions within the endoplasmic reticulum, mirroring the formation of calsequestrin polymers. In differentiating myotubes, the two proteins co-localize at triads, where they assemble with other j-SR proteins. By performing GST pull-down assays with distinct regions of the junctin tail, we identified two KEKE motifs able to bind calsequestrin. In addition, stretches of charged amino acids downstream these motifs were found to be also able to bind calsequestrin and the ryanodine receptor. Deletion of even one of these regions impaired the ability of junctin to localize at the j-SR, suggesting that interaction with other proteins at this site represents a key element in junctin targeting.


2021 ◽  
Vol 22 (23) ◽  
pp. 13033
Author(s):  
Ewan Richardson ◽  
Bartek J. Troczka ◽  
Oliver Gutbrod ◽  
Ulrich Ebbinghaus-Kintscher ◽  
Martin S. Williamson ◽  
...  

Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human–Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains.


2021 ◽  
Author(s):  
Ashok Nayak ◽  
Montserrat Samso

Activation of the intracellular Ca2+ channel ryanodine receptor (RyR) triggers a cytosolic Ca2+ surge, while elevated cytosolic Ca2+ inhibits the channel in a negative feedback mechanism. Cryo-EM carried out under partially inactivating Ca2+ conditions revealed two conformations of RyR1, an open state and an inactivated state, resolved at 4.0 and 3.3 Angstroms resolution, respectively. RyR1s were embedded in nanodiscs with two lipids resolved at each inter-subunit crevice. Ca2+ binding to the high affinity site engages the central (CD) and C-terminal domains (CTD) into a quasi-rigid unit, which separates the S6 four-helix bundle and opens the channel. Further out-of-plane rotation of the quasi-rigid unit pushes S6 towards the central axis, closing (inactivating) the channel. The inactivated conformation is characterized by a downward conformation of the cytoplasmic assembly, a tightly-knit subunit interface contributed by a fully occupied and partially remodeled Ca2+ activation site, and two salt bridges between the EF hand domain and the S2-S3 loop of the neighboring subunit validated by naturally-occurring disease-causing mutations. Ca2+ also bound to ATP, mediating a tighter interaction between S6 and CTD. Our study suggests that the closed-inactivated is a distinctive state of the RyR1 and its transition to the closed-activable state is not a simple reverse of the Ca2+ mediated activation pathway.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Toshiko Yamazawa

Ca2+-induced Ca2+ release (CICR) is mediated by ryanodine receptors, a Ca2+ release channel in the sarcoplasmic/endoplasmic reticulum (SR/ER), and plays an important role in various tissues. Type 1 ryanodine receptor (RYR1) plays a key role during excitation–contraction coupling of skeletal muscle. Mutations in RYR1 overactivate the channel to cause malignant hyperthermia (MH). MH is a serious complication characterized by skeletal muscle rigidity and elevated body temperature in response to commonly used inhalational anesthetics. Thus far, >300 mutations in the RYR1 gene have been reported in patients with MH. Some heat stroke triggered by exercise or environmental heat stress is also related to MH mutations in the RYR1 gene. The only drug approved for ameliorating the symptoms of MH is dantrolene, which has been first developed in the 1960s as a muscle relaxant. However, dantrolene has several disadvantages for clinical use: poor water solubility, which makes rapid preparation difficult in emergency situations, and long plasma half-life, which causes long-lasting side effects such as muscle weakness. Here, we show that a novel RYR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (compound 1 [Cpd1]), effectively rescues MH and heat stroke in new mouse model (RYR1-p.R2509C) relevant to MH. Cpd1 has great advantages of higher water solubility and shorter plasma half-life compared with dantrolene. Our data suggest that Cpd1 has the potential to be a promising new candidate for effective treatment of patients carrying RYR1 mutations. Finally, we have recently identified that heat directly activates RYR1, which induces Ca2+ release from intracellular stores. Our results provide direct evidence that heat induces Ca2+ release (HICR) from the SR through the mutants rather than wild type RYR1, causing an immediate rise in the cytosolic Ca2+ concentration.


2021 ◽  
pp. 101412
Author(s):  
Jingyan Zhang ◽  
Daniel P. Singh ◽  
Christopher Y. Ko ◽  
Roman Nikolaienko ◽  
Siobhan M. Wong King Yuen ◽  
...  

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Yvonne Sleiman ◽  
Alain Lacampagne ◽  
Albano C. Meli

AbstractThe regulation of intracellular calcium (Ca2+) homeostasis is fundamental to maintain normal functions in many cell types. The ryanodine receptor (RyR), the largest intracellular calcium release channel located on the sarco/endoplasmic reticulum (SR/ER), plays a key role in the intracellular Ca2+ handling. Abnormal type 2 ryanodine receptor (RyR2) function, associated to mutations (ryanopathies) or pathological remodeling, has been reported, not only in cardiac diseases, but also in neuronal and pancreatic disorders. While animal models and in vitro studies provided valuable contributions to our knowledge on RyR2 dysfunctions, the human cell models derived from patients’ cells offer new hope for improving our understanding of human clinical diseases and enrich the development of great medical advances. We here discuss the current knowledge on RyR2 dysfunctions associated with mutations and post-translational remodeling. We then reviewed the novel human cellular technologies allowing the correlation of patient’s genome with their cellular environment and providing approaches for personalized RyR-targeted therapeutics.


Sign in / Sign up

Export Citation Format

Share Document