scholarly journals Requirement for ATP by the DNA Damage Checkpoint Clamp Loader

2004 ◽  
Vol 279 (20) ◽  
pp. 20921-20926 ◽  
Author(s):  
Jerzy Majka ◽  
Brian Y. Chung ◽  
Peter M. J. Burgers
2021 ◽  
Author(s):  
Fengwei Zheng ◽  
Roxana E. Georgescu ◽  
Nina Y. Yao ◽  
Michael E. O’Donnell ◽  
Huilin Li

ABSTRACTIn response to DNA damage, the ring-shaped 9-1-1 clamp is loaded onto 5’ recessed DNA to arrest the cell cycle and activate the DNA damage checkpoint. The 9-1-1 clamp is a heterotrimeric ring that is loaded in S. cerevisiae by Rad24-RFC, an alternative clamp loader in which Rad24 replaces the Rfc1 subunit in the RFC1-5 clamp loader of PCNA. Unlike RFC that loads the PCNA ring onto a 3’-ss/ds DNA junction, Rad24-RFC loads the 9-1-1 ring onto a 5’-ss/ds DNA junction, a consequence of DNA damage. The underlying 9-1-1 clamp loading mechanism has been a mystery. Here we report two 3.2-Å cryo-EM structures of Rad24-RFC bound to DNA and either a closed or 27 Å open 9-1-1 clamp. The structures reveal a completely unexpected mechanism by which a clamp can be loaded onto DNA. The Rad24 subunit specifically recognizes the 5’-DNA junction and holds ds DNA outside the clamp loader and above the plane of the 9-1-1 ring, rather than holding DNA inside and below the clamp as in RFC. The 3’ ssDNA overhang is required to obtain the structure, and thus confers a second DNA binding site. The bipartite DNA binding by Rad24-RFC suggests that ssDNA may be flipped into the open 9-1-1 ring, similar to ORC-Cdc6 that loads the Mcm2-7 ring on DNA. We propose that entry of ssDNA through the 9-1-1 ring triggers the ATP hydrolysis and release of the Rad24-RFC. The key DNA binding residues are conserved in higher eukaryotes, and thus the 9-1-1 clamp loading mechanism likely generalizes.


2001 ◽  
Vol 21 (11) ◽  
pp. 3725-3737 ◽  
Author(s):  
Hee-Sook Kim ◽  
Steven J. Brill

ABSTRACT The large subunit of replication protein A (Rpa1) consists of three single-stranded DNA binding domains and an N-terminal domain (Rpa1N) of unknown function. To determine the essential role of this domain we searched for mutations that require wild-type Rpa1N for viability in yeast. A mutation in RFC4, encoding a small subunit of replication factor C (RFC), was found to display allele-specific interactions with mutations in the gene encoding Rpa1 (RFA1). Mutations that map to Rpa1N and confer sensitivity to the DNA synthesis inhibitor hydroxyurea, such asrfa1-t11, are lethal in combination withrfc4-2. The rfc4-2 mutant itself is sensitive to hydroxyurea, and like rfc2 and rfc5 strains, it exhibits defects in the DNA replication block and intra-S checkpoints. RFC4 and the DNA damage checkpoint geneRAD24 were found to be epistatic with respect to DNA damage sensitivity. We show that the rfc4-2 mutant is defective in the G1/S DNA damage checkpoint response and that both therfc4-2 and rfa1-t11 strains are defective in the G2/M DNA damage checkpoint. Thus, in addition to its essential role as part of the clamp loader in DNA replication, Rfc4 plays a role as a sensor in multiple DNA checkpoint pathways. Our results suggest that a physical interaction between Rfc4 and Rpa1N is required for both roles.


Sign in / Sign up

Export Citation Format

Share Document