Dna Damage
Recently Published Documents


(FIVE YEARS 13429)



2021 ◽  
Alena Kovaříková Svobodová ◽  
Lenka Stixová ◽  
Aleš Kovařík ◽  
Eva Bártová

Abstract Posttranscriptional RNA modifications, including the presence of methyl-6-adenosine (m6A), methyl-5-cytosine (m5C), or pseudo-uridine (Ψ), are known for over many years, but their functional properties have not been fully elucidated yet. Similarly, the regulatory role of N4-cytidine (ac4C) acetylation in RNA must be explored. Here, we observed PARP-dependent accumulation of ac4C RNA at UVA-microirradiated chromatin, which appears 2-5 minutes after genome injury, simultaneously with m6A RNAs but with distinct kinetics. When m6A RNAs disappeared from the lesions, the high level of ac4C RNA was maintained up to 20 minutes after genome injury. Surprisingly, the process of ac4C RNA accumulation at DNA lesions was not accompanied by the recruitment of acetyltransferase NAT10 to UVA-induced DNA lesions. This process was PARP dependent, and data show how epitranscriptomic features can contribute to DNA damage repair.

2021 ◽  
Emilie Logie ◽  
Louis Maes ◽  
Joris Van Meenen ◽  
Peter HL De Rijk ◽  
Mojca Strazisar ◽  

Ferroptosis is a lipid peroxidation-dependent mechanism of regulated cell death known to suppress tumor proliferation and progression. Although several genetic and protein hallmarks have been identified in ferroptotic cell death, it remains challenging to fully characterize ferroptosis signaling pathways and to find suitable biomarkers. Moreover, changes taking place in the epigenome of ferroptotic cells remain poorly studied. In this context, we aimed to investigate the role of chromatin remodeler forkhead box protein A1 (FOXA1) in RSL3-treated multiple myeloma cells because, similar to ferroptosis, this transcription factor has been associated with changes in the lipid metabolism, DNA damage, and epithelial-to-mesenchymal transition (EMT). RNA sequencing and Western blot analysis revealed that FOXA1 expression is consistently upregulated upon ferroptosis induction in different in vitro and in vivo disease models. In silico motif analysis and transcription factor enrichment analysis further suggested that ferroptosis-mediated FOXA1 expression is orchestrated by specificity protein 1 (Sp1), a transcription factor known to be influenced by lipid peroxidation. Remarkably, FOXA1 upregulation in ferroptotic myeloma cells did not alter hormone signaling or EMT, two key downstream signaling pathways of FOXA1. CUT&RUN genome-wide transcriptional binding site profiling showed that GPX4-inhibition by RSL3 triggered loss of binding of FOXA1 to pericentromeric regions in multiple myeloma cells, suggesting that this transcription factor is possibly involved in genomic instability, DNA damage, or cellular senescence under ferroptotic conditions.

2021 ◽  
Tania Gajardo ◽  
Marie Lo ◽  
Mathilde Bernard ◽  
Claire Leveau ◽  
Marie-Therese El-Daher ◽  

The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cell processes, including cell migration. Mutations in the TTC7A gene have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. Although several cellular functions have been associated with TTC7A, the role of the protein in the maintenance of the immune homeostasis is still poorly understood. Here we leverage microfabricated devices to investigate the impact of TTC7A deficiency in leukocytes migration at the single cell level. We show that TTC7A-deficient leukocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositides signaling, leading to the downregulation of the PI3K/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamic. This resulted in impaired cell motility, accumulation of DNA damage and increased cell death during chemotaxis in dense 3D gels. Our results highlight a novel role of TTC7A as a critical regulator of leukocyte migration. Impairment of this cellular function is likely to contribute to pathophysiology underlying progressive immunodeficiency in patients.

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1321
Jonathan Pommer Hansen ◽  
Waled Mohammed Ali ◽  
Rajeeve Sivadasan ◽  
Karthika Rajeeve

Epidemiological evidence reveal a very close association of malignancies with chronic inflammation as a result of persistent bacterial infection. Recently, more studies have provided experimental evidence for an etiological role of bacterial factors disposing infected tissue towards carcinoma. When healthy cells accumulate genomic insults resulting in DNA damage, they may sustain proliferative signalling, resist apoptotic signals, evade growth suppressors, enable replicative immortality, and induce angiogenesis, thus boosting active invasion and metastasis. Moreover, these cells must be able to deregulate cellular energetics and have the ability to evade immune destruction. How bacterial infection leads to mutations and enriches a tumour-promoting inflammatory response or micro-environment is still not clear. In this review we showcase well-studied bacteria and their virulence factors that are tightly associated with carcinoma and the various mechanisms and pathways that could have carcinogenic properties.

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1473
Xiang-Zhong Liu ◽  
Mi Zhou ◽  
Chun-Chun Du ◽  
Hong-Hong Zhu ◽  
Xi Lu ◽  

(±)-Hypersines A–C (1–3), the three pairs of enantiomerically pure monoterpenoid polyprenylated acylphloroglucinols with an unprecedented 6/6/5/4 fused ring system, were isolated from Hypericum elodeoides. Their structures, including absolute configurations, were elucidated by comprehensive spectroscopic data, single-crystal X-ray diffraction, and quantum chemical calculations. The plausible, biosynthetic pathway of 1–3 was proposed. Moreover, the bioactivity evaluation indicated that 1a might be a novel DNA damage response inhibitor, and could enhance MCF-7 cell sensitivity to the anticancer agent, camptothecin.

Nephron ◽  
2021 ◽  
pp. 1-4
Joseph V. Bonventre

DNA damage is an important consequence of injury to the proximal tubule. The proximal tubule cell responds to this damage by mounting a DNA damage response (DDR). Two protein kinases, ataxia-telangiectasia mutated (ATM) or ataxia telangiectasia and Rad3-related (ATR), play an important role in this DDR. If efficient, the DDR can lead to repair of the DNA, cell renewal, and return to a healthy state. In many cases, however, especially in the setting of baseline kidney injury, there is incomplete repair. In human chronic kidney disease (CKD) and in human kidney organoids exposed to acute injury, there is increased evidence of DNA damage and activation of ATR. This review focuses on 3 aspects of the DNA damage and response to it: (1) DNA damage and the DDR precipitated by acute injury; (2) protection afforded by the DDR kinase, ATR, in multiple mouse models of acute kidney injury; and (3) downstream effects of genetic inhibition of ATR in the proximal tubule, leading to maladaptive repair, fibrosis, and CKD.

2021 ◽  
Pin-Rui Su ◽  
Li You ◽  
Cecile Beerens ◽  
Karel Bezstarosti ◽  
Jeroen Demmers ◽  

Tumor heterogeneity is an important source of cancer therapy resistance. Single cell proteomics has the potential to decipher protein content leading to heterogeneous cellular phenotypes. Single-Cell ProtEomics by Mass Spectrometry (SCoPE-MS) is a recently developed, promising, unbiased proteomic profiling techniques, which allows profiling several tens of single cells for >1000 proteins per cell. However, a method to link single cell proteomes with cellular behaviors is needed to advance this type of profiling technique. Here, we developed a microscopy-based functional single cell proteomic profiling technology, called FUNpro, to link the proteome of individual cells with phenotypes of interest, even if the phenotypes are dynamic or the cells of interest are sparse. FUNpro enables one i) to screen thousands of cells with subcellular resolution and monitor (intra)cellular dynamics using a custom-built microscope, ii) to real-time analyze (intra)cellular dynamics of individual cells using an integrated cell tracking algorithm, iii) to promptly isolate the cells displaying phenotypes of interest, and iv) to single cell proteomically profile the isolated cells. We applied FUNpro to proteomically profile a newly identified small subpopulation of U2OS osteosarcoma cells displaying an abnormal, prolonged DNA damage response (DDR) after ionizing radiation (IR). With this, we identified PDS5A and PGAM5 proteins contributing to the abnormal DDR dynamics and helping the cells survive after IR.

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2056
Hui Jiang ◽  
Ya-Fang Mei

Severe acute respiratory syndrome coronavirus 2 (SARS–CoV–2) has led to the coronavirus disease 2019 (COVID–19) pandemic, severely affecting public health and the global economy. Adaptive immunity plays a crucial role in fighting against SARS–CoV–2 infection and directly influences the clinical outcomes of patients. Clinical studies have indicated that patients with severe COVID–19 exhibit delayed and weak adaptive immune responses; however, the mechanism by which SARS–CoV–2 impedes adaptive immunity remains unclear. Here, by using an in vitro cell line, we report that the SARS–CoV–2 spike protein significantly inhibits DNA damage repair, which is required for effective V(D)J recombination in adaptive immunity. Mechanistically, we found that the spike protein localizes in the nucleus and inhibits DNA damage repair by impeding key DNA repair protein BRCA1 and 53BP1 recruitment to the damage site. Our findings reveal a potential molecular mechanism by which the spike protein might impede adaptive immunity and underscore the potential side effects of full-length spike-based vaccines.

2021 ◽  
Kazutoshi Takahashi ◽  
Chikako Okubo ◽  
Michiko Nakamura ◽  
Mio Iwasaki ◽  
Yuka Kawahara ◽  

Xeno-free culture systems have expanded the clinical and industrial application of human pluripotent stem cells (PSCs). However, yet some problems, such as the reproducibility among the experiments, remain. Here we describe an improved method for the subculture of human PSCs. The revised method significantly enhanced the viability of human PSCs by lowering DNA damage and apoptosis, resulting in more efficient and reproducible downstream applications such as gene editing, gene delivery, and directed differentiation. Furthermore, the method did not alter PSC characteristics after long-term culture and attenuated the growth advantage of abnormal subpopulations. This robust passaging method minimizes experimental error and reduces the rate of PSCs failing quality control of human PSC research and application.

Shihori Tanabe ◽  
Sabina Quader ◽  
Ryuichi Ono ◽  
Horacio Cabral ◽  
Kazuhiko Aoyagi ◽  

Epithelial-mesenchymal transition (EMT) networks are essential in acquiring the drug resistance and cancer malignant features in cancer stem cells (CSCs). In this regard, gene expression profiles in diffuse- and intestinal-type gastric cancer (GC) have been analyzed to reveal the network pathways in EMT and CSCs, since the diffuse-type GC has much more mesenchymal features than intestinal-type GC that has the intestinal features. The study results revealed that the activation state of several canonical pathways related to cell cycle regulation was altered. The canonical pathway on Cell cycle: G1/S checkpoint regulation was activated in diffuse-type GC, and canonical pathways on Cell cycle control of chromosomal replication and Cyclins and cell cycle regulation were activated in intestinal-type GC. Canonical pathway related to Role of BRCA1 in DNA damage response was activated in intestinal-type GC, where BRCA1, which is related to G1/S phase transition was up-regulated in intestinal-type GC. Several microRNAs (miRNAs), including mir-10, mir-17, mir-19, mir-194, mir-224, mir-25, mir-34, mir-451, and mir-605, were identified to have direct relationships of RNA-RNA interaction in Cell cycle: G1/S checkpoint regulation pathway. Additionally, cell cycle regulation may be altered in EMT conditions. The alterations in activation states of the pathways related to cell cycle regulation in diffuse- and intestinal-type GC would indicate the significance of cell cycle regulation in EMT.

Sign in / Sign up

Export Citation Format

Share Document